2,773 research outputs found

    CurveFormer: 3D Lane Detection by Curve Propagation with Curve Queries and Attention

    Full text link
    3D lane detection is an integral part of autonomous driving systems. Previous CNN and Transformer-based methods usually first generate a bird's-eye-view (BEV) feature map from the front view image, and then use a sub-network with BEV feature map as input to predict 3D lanes. Such approaches require an explicit view transformation between BEV and front view, which itself is still a challenging problem. In this paper, we propose CurveFormer, a single-stage Transformer-based method that directly calculates 3D lane parameters and can circumvent the difficult view transformation step. Specifically, we formulate 3D lane detection as a curve propagation problem by using curve queries. A 3D lane query is represented by a dynamic and ordered anchor point set. In this way, queries with curve representation in Transformer decoder iteratively refine the 3D lane detection results. Moreover, a curve cross-attention module is introduced to compute the similarities between curve queries and image features. Additionally, a context sampling module that can capture more relative image features of a curve query is provided to further boost the 3D lane detection performance. We evaluate our method for 3D lane detection on both synthetic and real-world datasets, and the experimental results show that our method achieves promising performance compared with the state-of-the-art approaches. The effectiveness of each component is validated via ablation studies as well

    A performance comparison between ad hoc and centrally controlled CDMA wireless LANs

    Full text link

    China's New-Type Urbanisation Plan (NUP) and the foreseeing challenges for decarbonization of cities: a review

    Get PDF
    The most recent urbanisation plan in China, the New-type Urbanisation Plan (NUP) launched in March 2014, is a national plan proposed for development of a scientific and reasonable urban development model by 2020. NUP aims to connect four major plans of ecological progress, urbanisation quality, expanding domestic demand and rural-urban coordination. After almost two years, several contradictions are already in place. However, there are key challenges for decarbonization of cities in this process. This review paper explores four major challenges and suggests steps forward during and after NUP's lifespan. This study also elaborates on the processes and contradictions for decarbonization of Chinese cities

    Photocatalytic Degradation of Profenofos and Triazophos Residues in the Chinese Cabbage, \u3cem\u3eBrassica chinensis\u3c/em\u3e, Using Ce-Doped TiO\u3csub\u3e2\u3c/sub\u3e

    Get PDF
    Pesticides have revolutionized the modern day of agriculture and substantially reduced crop losses. Synthetic pesticides pose a potential risk to the ecosystem and to the non-target organisms due to their persistency and bioaccumulation in the environment. In recent years, a light-mediated advanced oxidation processes (AOPs) has been adopted to resolve pesticide residue issues in the field. Among the current available semiconductors, titanium dioxide (TiO2) is one of the most promising photocatalysts. In this study, we investigated the photocatalytic degradation of profenofos and triazophos residues in Chinese cabbage, Brassica chinensis, using a Cerium-doped nano semiconductor TiO2 (TiO2/Ce) under the field conditions. The results showed that the degradation efficiency of these organophosphate pesticides in B. chinensis was significantly enhanced in the presence of TiO2/Ce. Specifically, the reactive oxygen species (ROS) contents were significantly increased in B. chinensis with TiO2/Ce treatment, accelerating the degradation of profenofos and triazophos. Ultra-performance liquid chromatography–mass spectroscopy (UPLC-MS) analysis detected 4-bromo-2-chlorophenol and 1-phenyl-3-hydroxy-1,2,4-triazole, the major photodegradation byproducts of profenofos and triazophos, respectively. To better understand the relationship between photodegradation and the molecular structure of these organophosphate pesticides, we investigated the spatial configuration, the bond length and Mulliken atomic charge using quantum chemistry. Ab initio analysis suggests that the bonds connected by P atom of profenofos/triazophos are the initiation cleavage site for photocatalytic degradation in B. chinensis

    A Simple Explanation for DAMA with Moderate Channeling

    Full text link
    We consider the possibility that the DAMA signal arises from channeled events in simple models where the dark matter interaction with nuclei is suppressed at small momenta. As with the standard WIMP, these models have two parameters (the dark matter mass and the size of the cross-section), without the need to introduce an additional energy threshold type of parameter. We find that they can be consistent with channeling fractions as low as about ~ 15%, so long as at least ~70% of the nuclear recoil energy for channeled events is deposited electronically. Given that there are reasons not to expect very large channeling fractions, these scenarios make the channeling explanation of DAMA much more compelling.Comment: 6 pages, 2 figure

    Non-relativistic effective theory of dark matter direct detection

    Full text link
    Dark matter direct detection searches for signals coming from dark matter scattering against nuclei at a very low recoil energy scale ~ 10 keV. In this paper, a simple non-relativistic effective theory is constructed to describe interactions between dark matter and nuclei without referring to any underlying high energy models. It contains the minimal set of operators that will be tested by direct detection. The effective theory approach highlights the set of distinguishable recoil spectra that could arise from different theoretical models. If dark matter is discovered in the near future in direct detection experiments, a measurement of the shape of the recoil spectrum will provide valuable information on the underlying dynamics. We bound the coefficients of the operators in our non-relativistic effective theory by the null results of current dark matter direct detection experiments. We also discuss the mapping between the non-relativistic effective theory and field theory models or operators, including aspects of the matching of quark and gluon operators to nuclear form factors.Comment: 35 pages, 3 figures, Appendix C.3 revised, acknowledgments and references adde

    The Tevatron at the Frontier of Dark Matter Direct Detection

    Get PDF
    Direct detection of dark matter (DM) requires an interaction of dark matter particles with nucleons. The same interaction can lead to dark matter pair production at a hadron collider, and with the addition of initial state radiation this may lead to mono-jet signals. Mono-jet searches at the Tevatron can thus place limits on DM direct detection rates. We study these bounds both in the case where there is a contact interaction between DM and the standard model and where there is a mediator kinematically accessible at the Tevatron. We find that in many cases the Tevatron provides the current best limit, particularly for light dark matter, below 5 GeV, and for spin dependent interactions. Non-standard dark matter candidates are also constrained. The introduction of a light mediator significantly weakens the collider bound. A direct detection discovery that is in apparent conflict with mono-jet limits will thus point to a new light state coupling the standard model to the dark sector. Mono-jet searches with more luminosity and including the spectrum shape in the analysis can improve the constraints on DM-nucleon scattering cross section.Comment: 20 pages, 8 figures, final version in JHE

    Probing electronic-vibrational dynamics of N2+ induced by strong-field ionization

    Full text link
    The coupled electronic-vibrational dynamics of nitrogen ions induced by strong-field ionization is investigated theoretically to corroborate the recent transient X-ray K-edge absorption experiment [PRL 129, 123002 (2022)], where the population distribution of three electronic states in air lasing of N2+ was determined for the first time. By extending the ionization-coupling model to include the transient absorption, we successfully reproduce the time-resolved X-ray absorption spectra of nitrogen ions observed in the experiment. By identifying the contributions from different electronic states, the study provides different interpretation revealing the significant role of excited state A arising from the strong coupling between vibrational states in strong laser fields. It indicates that the electronic population inversion occurs at least for certain alignment of nitrogen molecules. The theory helps uncovering new features of absorption from forbidden transitions during ionization and confirming that the vibration coherence at each electronic channel induces the modulation of absorbance after strong field ionization. A new scheme is proposed to determine the population transfer at different probing geometry to avoid the spectral overlap. This work offers valuable insights into the intricate interplay between electronic and vibrational dynamics and helps to resolve the debate on nitrogen air lasing
    corecore