347 research outputs found

    In situ diagnostics for the study of carbon nanotube growth mechanism by oating catalyst chemical vapor deposition for advanced composite applications

    Get PDF
    Dans le vaste domaine des nanosciences et nanotechnologies, les nanotubes de carbone (NTC) suscitent un intérêt particulier en raison de leur structure originale qui leur confère des propriétés exceptionnelles. Alors que le nombre d'applications ainsi que la quantité de NTC produite ne cessent d'augmenter chaque année, il est essentiel de comprendre les mécanismes régissant la formation de ces nanomatériaux afin de contrôler leur structure et leur organisation, optimiser les rendements, diminuer les risques sanitaires et environnementaux et améliorer les performances des matériaux et composants sous-jacents. Parmi les techniques de synthèse répertoriées, la CVD d'aérosol (Chemical Vapor Deposition) développée au laboratoire MSSMat, permet la croissance continue de NTC multi-feuillets de haute qualité sur divers substrats par l injection simultanée de sources carbonées liquide (xylène) et gazeuse (acétylène) et de précurseur catalytique (ferrocène) dans un réacteur porté à une température comprise entre 400 et 1000C. L'objectif de cette étude a consisté à examiner les différentes étapes de la formation des NTC dès l'injection des précurseurs jusqu'à la fin de la croissance. Grâce une nouvelle approche expérimentale faisant intervenir plusieurs diagnostics in situ couplés à des modèles numériques, nous avons pu suivre l'évolution des différents réactifs et produits lors de synthèses dans des conditions thermodynamiques (flux de gaz et températures) et chimiques (concentrations des différents précurseurs) variées. De fait, après avoir examiné l'évolution spatiale des gouttelettes formées lors de l'injection, la germination des nanoparticules en phase gazeuse a été étudiée par incandescence induite par laser (L2I) et spectroscopie de plasma induit par laser (LIPS). Une relation entre la taille de ces particules et celle des NTC a ainsi pu être mise en évidence. Les réactions chimiques pendant la synthèse ont ensuite été analysées par spectrométrie de masse et chromatographie en phase gazeuse. Différents mécanismes réactionnels ont ainsi pu être identifiés en fonction des sources de carbone utilisées, alors que l'effet de l'hydrogène sur la croissance, soit accélérateur ou soit inhibiteur selon les conditions, a été étudié. Les rôles du substrat ont par ailleurs été examinés en comparant la croissance et la morphologie des NTC obtenus sur différentes surfaces telles que des plaques de quartz, des fibres de carbone ou des micro-particules d'alumine, de carbure de silicium, de carbure de titane et de graphène de formes variées. L'effet catalytique de certains substrats ou mélanges de substrats sur la croissance des NTC a d'ailleurs été mis en évidence, de même que l'importance du rapport surface/volume des substrats sur les rendements massiques des NTC. La cinétique de croissance des NTC a finalement été étudiée et différents mécanismes à l'origine de la désactivation des catalyseurs ont été identifiés. Enfin, les différentes nanostructures hybrides issues de la croissance de NTC sur différents substrats ont servi à concevoir des matériaux composites multi-fonctionnels à hautes-performances dont les propriétés électriques, thermiques et mécaniques ont été analysées.In the vast field of nanoscience and nanotechnology, carbon nanotubes (CNTs) are of particular interest because of their unique structure which provides them outstanding properties. While the number of CNT-based applications as well as the amount of CNTs produced are increasing year by year, it is essential to understand the mechanisms governing the formation of these nanomaterials to control their structure and organization, maximize the yields, reduce the health and environmental risks and improve the performance of the underlying materials and components. Among the listed synthesis techniques, the aerosol-assisted chemical vapor deposition (CVD) process developed in the laboratory MSSMat allows continuous growth of multi-walled CNTs (MWNTs) on various substrates by the simultaneous injection of carbon feedstock(s) (xylene and/or acetylene) and catalytic precursor (ferrocene) in a reactor heated up to a temperature ranging between 400 and 1000C. The aim of this study was to analyse the different stages of the CNT formation from the first precursor injection until the growth termination. By the mean of a new experimental approach involving several in situ diagnostics coupled with numerical models, we were able to follow the evolution of the different products and reagents during the synthesis under various thermodynamic and chemical conditions. Hence, after investigating the spatial evolution of the droplets formed in the injection, the nanoparticle germination and nucleation in the gas phase has been studied by time resolved laser-induced incandescence (TRL2I) and laser-induced breakdown spectroscopy (LIBS). A relationship between the size of the particles and the CNTs has been highlighted. Moreover, the chemical reactions during the synthesis were analyzed by mass spectrometry (MS) and gas phase chromatography (GPC). Different reaction pathways have thus been identified depending on the carbon source(s) used, while the effect of hydrogen on the CNT growth, either accelerating or inhibiting based on the CVD conditions, was studied. The substrates' roles were then examined by comparing the growth and morphology of the CNTs obtained on various surfaces such as quartz plates, carbon fibers or micro-particles of alumina, silicon carbide, titanium carbide and graphene. The catalytic effect of some substrates or mixtures of substrates on the CNT growth has also been highlighted, as well as the importance of the substrate's surface/volume ratio on the CNT mass yields. Furthermore, the CNT growth kinetics have been studied and different mechanisms inducing catalyst deactivation and subsequently growth termination were identified. Finally, the different as-synthesized nanostructures originated from the hybridization of CNTs with other materials were used to prepare high-performance multi-functional composites. The electrical, thermal and mechanical properties of these materials have been examined.CHATENAY MALABRY-Ecole centrale (920192301) / SudocSudocFranceF

    Evaluation of the nanotube intrinsic resistance across the tip-carbon nanotube-metal substrate junction by Atomic Force Microscopy

    Get PDF
    Using an atomic force microscope (AFM) at a controlled contact force, we report the electrical signal response of multi-walled carbon nanotubes (MWCNTs) disposed on a golden thin film. In this investigation, we highlight first the theoretical calculation of the contact resistance between two types of conductive tips (metal-coated and doped diamond-coated), individual MWCNTs and golden substrate. We also propose a circuit analysis model to schematize the «tip-CNT-substrate» junction by means of a series-parallel resistance network. We estimate the contact resistance R of each contribution of the junction such as Rtip-CNT, RCNT-substrate and Rtip-substrate by using the Sharvin resistance model. Our final objective is thus to deduce the CNT intrinsic radial resistance taking into account the calculated electrical resistance values with the global resistance measured experimentally. An unwished electrochemical phenomenon at the tip apex has also been evidenced by performing measurements at different bias voltages with diamond tips. For negative tip-substrate bias, a systematic degradation in color and contrast of the electrical cartography occurs, consisting of an important and non-reversible increase of the measured resistance. This effect is attributed to the oxidation of some amorphous carbon areas scattered over the diamond layer covering the tip. For a direct polarization, the CNT and substrate surface can in turn be modified by an oxidation mechanism

    Modeling a New Water Channel That Allows SET9 to Dimethylate p53

    Get PDF
    SET9, a protein lysine methyltransferase, has been thought to be capable of transferring only one methyl group to target lysine residues. However, some reports have pointed out that SET9 can dimethylate Lys372 of p53 (p53-K372) and Lys4 of histone H3 (H3-K4). In order to understand how p53 can be dimethylated by SET9, we measured the radius of the channel that surrounds p53-K372, first on the basis of the crystal structure of SET9, and we show that the channel is not suitable for water movement. Second, molecular dynamic (MD) simulations were carried out for 204 ns on the crystal structure of SET9. The results show that water leaves the active site of SET9 through a new channel, which is made of G292, A295, Y305 and Y335. In addition, the results of molecular docking and MD simulations indicate that the new water channel continues to remain open when S-adenosyl-L-methionine (AdoMet) or S-adenosyl-L-homocysteine (AdoHcy) is bound to SET9. The changes in the radii of these two channels were measured in the equilibrium phase at the constant temperature of 300 K. The results indicate that the first channel still does not allow water to get into or out of the active site, but the new channel is large enough to allow this water to circulate. Our results indicate that water can be removed from the active site, an essential process for allowing the dimethylation reaction to occur

    TENSILE BEHAVIOR OF A TWISTED CARBON NANOTUBE YARN

    No full text
    International audienc

    The growth of carbon nanotube multilayers on ceramic micro-particles by catalytic chemical vapour deposition

    No full text
    International audienceAligned multi-walled carbon nanotube (CNT) multi-layers have been synthesized on micro-spherical alumina particles and on micro-platelet silicon carbide particles. Liquid injection catalytic chemical vapour deposition is used in this work through sequential injections of aerosols containing both carbon feedstocks (xylene and acetylene) and catalyst precursor (ferrocene). The two substrate materials have been chosen due to their large surface areas but different shapes and compositions. The CNT stack formation process coupled with real-time in situ mass spectrometry and gas phase chromatography has been tailored to investigate the effects of several factors such as growth temperature, hydrogen flow rate, reaction time, carbon source(s), catalyst concentration, injection speed and substrate's nature andmorphology on the CNT growth. The simultaneous feeding of catalysts and carbon sources combined with the use of non-flat micro-sized substrates consists of a promising approach for large scale production. The as-prepared hybrids can be then used as reinforcements formulti-functional composite applications

    Elaboration par plasma froid basse pression de revêtements polymères protecteurs de fibres organiques et inorganiques

    No full text
    L allègement des structures combinée a l augmentation de leurs propriétés mécaniques et électriques est un des axes d innovation dans le domaine des composites à hautes performances. Certains de ces matériaux emplois des matrices organiques à renforts carbones. Une voie de recherche privilégiée est l utilisation et l intégration de nanomatériaux aux composites. Ainsi des nanotubes de carbone sont greffés à la surface des fibres de carbone, créant une fibre hybride. Pendant le processus industriel subi par la fibre, des nanotubes sont susceptibles d être relâchés et de provoquer la dégradation des propriétés de la fibre. La dimension nanométrique de ces particules les rend plus performant que les matériaux conventionnels mais constitue un risque potentiel pour la santé de l être humain. Pour conserver les nanotubes sur la fibre, un revêtement polymérique protecteur est ajouté à la fibre hybride. Dans le cadre de cette thèse, ce revêtement est déposé par polymérisation plasma sous vide d un monomère. Les monomères d acide acrylique et d acétylène agissent avec les paramètres de dépôt sur l interface entre les fibres et la matrice, et donc sur les propriétés mécaniques du composite. L évolution de cette interface est caractérisée par l énergie de surface du dépôt sur substrats modèles puis sur fibre hybride. Les revêtements issus des deux monomères assurent la protection des nanotubes, améliorent l interface entre la fibre et la matrice, tout en conservant le gain de conduction apporte par le greffage des nanotubes. L addition d une étape de traitement plasma non polymérisable, avant ou après le dépôt du polymère, peut améliorer les propriétés interfaciales par rapport aux fibres hybrides.Innovation areas in high performance composite are based on structure lightening combined with mechanical and electrical enhancement. Carbon reinforced organic matrix is widely used for composite applications. Nanomaterial s incorporation appears among the ways of improvement. In this study, carbon nanotubes are grafted on carbon fibers surface to create a hybrid fiber. However, handling hybrid fibers may lead releasing CNT, weakening fiber properties and unwilling health risk. A protective layer is then required for properties saving and for safety purpose. In our work, a coating is deposited by low pressure plasma polymerization of organic monomer: acrylic acid or acetylene. Monomer deposit parameters influence cohesion at the interface between fiber and matrix by means of physical and chemical interactions. We show from results observed at microscal that macro mechanical properties of the final composite are also modified. Coating is characterized by means of surface energy calculation on model substrate. It allows choosing coating properties and plasma treatment conditions to be applied to hybrid fibers. A protective coating is obtained from the two monomers on nanotubes and increases mechanical properties at the fiber/matrix interface. The deposit does not spoil electrical conductivity of hybrid fiber. Addition of pre or post plasma treatment before or after coating may improve in some case mechanical properties of composite within the interface between protected hybrid fiber and matrix compared to uncoated one.CHATENAY MALABRY-Ecole centrale (920192301) / SudocSudocFranceF

    Plasma Polypyrrole Coated Hybrid Composites with Improved Mechanical and Electrical Properties for Aerospace Applications

    No full text
    International audienceThis paper deals with the dielectric barrier discharge assisted continuous plasma polypyrrole deposition on CNT-grafted carbon fibers for conductive composite applications. The simultaneous effects of three controllable factors have been studied on the electrical resistivity (ER) of these two material systems based on multivariate experimental design methodology. A posterior probability referring to Benjamini-Hochberg (BH) false discovery rate was explored as multiple testing corrections of the t-test p values. BH significance threshold of 0.05 was produced truly statistically significant coefficients to describe ER of two material systems. A group of plasma modified samples was chosen to be used for composite manufacturing to drive an assessment of interlaminar shear properties under static loading. Transversal and longitudinal electrical resistivity (DC, omega = 0) of composite samples were studied to compare both the effects of CNT grafting and plasma modification on ER of resultant composites
    • …
    corecore