47 research outputs found

    The relationship between dietary acid load and intensity of musculoskeletal pain condition:A population‐based study

    Get PDF
    Pain is a globally prevalent problem, and a comprehension of its pathophysiology is important with respect to patient's health. Musculoskeletal pain conditions (MPs) may be associated with physical, lifestyle, and nutrition status, while dietary acid load (DAL) may be inversely associated with musculoskeletal health in adults. This cross‐sectional study consisted of 175 adults experiencing pain. Anthropometric measurements, physical activity (PA), and pain intensity were assessed via specific questionnaires. Dietary data were collected using a 7‐day 24‐h recall. Foods and beverages were analyzed with Nutritionist IV software for extracting the total energy and nutrients. Net endogenous acid production (NEAP) and potential renal acid load (PRAL) were evaluated for assessing the DAL. Linear regression and Spearman correlation were used to investigate the association of exposure and input variables. Linear regression showed a positive relationship between PRAL and NEAP and pain intensity in the crude model. This significant positive relationship remained after adjusting for all confounders. A lower consumption of potassium, magnesium, vitamin B9 and C, and fiber was seen in the following quartiles of PRAL and NEAP. In addition, MPs intensity and PRAL and NEAP had a weak, positive correlation. This study suggests that a higher DAL may be associated with MPs. However, further research is needed

    The Association Between Dietary Energy Density and Musculoskeletal Pain in Adult Men and Women

    Get PDF
    Musculoskeletal pains (MPs), defined as persistent or recurrent pain, is a complex health problem. High overall calorie and fat intake have been related to obesity and MPs. Dietary energy density (DED), defined as energy content of food and beverages (in kcal) per unit total weight, has been associated with chronic muscle, cartilage, bone damage and pain. Thus, the purpose of this study is to investigate the association between DED and MPs in adult men and women. A total of 175 men and women (> 18 years) with MP participated in the study. A validated short form physical activity (PA) questionnaire, demographic, and McGill Pain Questionnaire were used. Anthropometric measurements were evaluated via standard protocols. Furthermore, a seven-day 24-hour recall of diet was used to determine the dietary intake. Total DED was calculated and divided into quartiles. Linear regression was used to discern the association between DED and MPs in adults. Participants assigned in the highest category of DED were characterized by lower intake of potassium, magnesium, vitamin C, folate, and fiber. However, results showed displayed higher intake of sodium, vitamin E, vitamin B3, fat, protein, cholesterol, saturated fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids (p < 0.001). Finally, after adjustment for confounders such as age, gender, PA, body mass index, waist circumference, education, job, marital status, history of some chronic diseases and vitamin C supplementation, a significant positive association was detected between DED and pain intensity. There was no significant association between DED and pain frequency in all models

    Impact of loss on the wave dynamics in photonic waveguide lattices

    Full text link
    We analyze the impact of loss in lattices of coupled optical waveguides and find that in such case, the hopping between adjacent waveguides is necessarily complex. This results not only in a transition of the light spreading from ballistic to diffusive, but also in a new kind of diffraction that is caused by loss dispersion. We prove our theoretical results with experimental observations.Comment: Accepted for publication in PRL, 5+8 pages (Paper + Supplemental material), 4 figure

    Is there any putative mediatory role of inflammatory markers on the association between ultra-processed foods and resting metabolic rate?

    Get PDF
    The resting metabolic rate (RMR) represents the largest component of total daily energy expenditure. The sale of ultra-processed foods (UPF) is increasing globally; however, UPF can have many adverse effects, including increasing inflammatory markers and altering RMRs. This cross-sectional study included 285 healthy overweight and obese women. Anthropometric measurements were evaluated using a bioelectrical impedance analyzer InBody 770 scanner. High-sensitivity C-reactive protein (hs-CRP), plasminogen activator-1 (PAI-1), monocyte chemoattractant protein (MCP-1), and interleukin-1 beta (IL-1β) blood levels were measured after a 12-h fasting. Indirect calorimetry was used to evaluate the RMR by using the Weir equation, and RMR deviation (RMR estimated - RMR actual), RMR per body mass index (BMI), and free fat mass (FFM) were estimated. A validated food frequency questionnaire (FFQ) was used, and seven groups of UPFs were extracted based on the NOVA method. A negative association between the RMR [β = −0.159, 95% confidence interval (CI): −0.471, −0.052, P = 0.044], RMR per BMI (β = −0.014, 95% CI: −0.025, −0.006, P = 0.036), and RMR per FFM (β = −0.241, 95% CI: −0.006, −0.000, P = 0.041) using the NOVA score was observed after adjusting for confounders. This association disappeared after inclusion of each inflammatory marker. All the markers may inversely mediate the relationship between the mentioned variables and the NOVA score. hs-CRP and MCP-1 also had a negative effect on the relationship between the NOVA score and RMR deviation. Finally, UPF intake is likely related with the RMR, mediated through changes in the production of hs-CRP, PAI-1, MCP-1, and IL-1β

    Dynamics of levitated nanospheres: towards the strong coupling regime

    Get PDF
    The use of levitated nanospheres represents a new paradigm for the optomechanical cooling of a small mechanical oscillator, with the prospect of realising quantum oscillators with unprecedentedly high quality factors. We investigate the dynamics of this system, especially in the so-called self-trapping regimes, where one or more optical fields simultaneously trap and cool the mechanical oscillator. The determining characteristic of this regime is that both the mechanical frequency ωM\omega_M and single-photon optomechanical coupling strength parameters gg are a function of the optical field intensities, in contrast to usual set-ups where ωM\omega_M and gg are constant for the given system. We also measure the characteristic transverse and axial trapping frequencies of different sized silica nanospheres in a simple optical standing wave potential, for spheres of radii r=20−500r=20-500\,nm, illustrating a protocol for loading single nanospheres into a standing wave optical trap that would be formed by an optical cavity. We use this data to confirm the dependence of the effective optomechanical coupling strength on sphere radius for levitated nanospheres in an optical cavity and discuss the prospects for reaching regimes of strong light-matter coupling. Theoretical semiclassical and quantum displacement noise spectra show that for larger nanospheres with r≳100r \gtrsim 100\,nm a range of interesting and novel dynamical regimes can be accessed. These include simultaneous hybridization of the two optical modes with the mechanical modes and parameter regimes where the system is bistable. We show that here, in contrast to typical single-optical mode optomechanical systems, bistabilities are independent of intracavity intensity and can occur for very weak laser driving amplitudes

    Interactions between Caveolin-1 polymorphism and Plant-based dietary index on metabolic and inflammatory markers among women with obesity

    Get PDF
    A series of recent studies have indicated that the Caveolin-1 (CAV-1) gene variant may be associated with metabolic and inflammatory markers and anthropometric measures. Furthermore, it has been shown that a plant-based dietary index (PDI) can elicit a positive impact on these metabolic markers. Therefore, we sought to examine whether PDI intakes may affect the relationship between CAV-1 (rs3807992) and metabolic factors, as well as serum inflammatory markers and anthropometric measures, in women with obesity. This current study consisted of 400 women with overweight and obesity, with a mean (SD) age of 36.67 ± 9.10 years. PDI was calculated by a food frequency questionnaire (FFQ). The anthropometric measurements and serum profiles were measured by standard protocols. Genotyping of the CAV-1(rs3807992) was conducted by the PCR–RFLP method. The following genotypic frequencies were found among the participants: GG (47.8%), AG (22.3%), and AA (2.3%). In comparison to GG homozygotes, risk-allele carriers (AA + AG) with higher PDI intake had lower ALT (P: 0.03), hs-CRP (P: 0.008), insulin (P: 0.01) and MCP-1 (P: 0.04). Furthermore, A-allele carriers were characterized by lower serum ALT (P: 0.04), AST (P: 0.02), insulin (P: 0.03), and TGF-β (P: 0.001) when had the higher following a healthful PDI compared to GG homozygote. Besides, risk-allele carriers who consumed higher unhealthful PDI had higher WC (P: 0.04), TC/HDL (P: 0.04), MCP-1 (P: 0.03), and galactin-3 (P: 0.04). Our study revealed that A-allele carriers might be more sensitive to PDI composition compared to GG homozygotes. Following a healthful PDI in A-allele carriers may be associated with improvements in metabolic and inflammatory markers and anthropometric measures

    The association between dietary micronutrient patterns and odds of diabetic nephropathy: A case–control study

    Get PDF
    Abstract Uncontrolled diabetes can lead to diabetic nephropathy (DN). The aim of the study was to investigate the relationship between different dietary micronutrient patterns and risk of DN in women. This was a case–control study. One hundred and five patients had DN (defined as urinary mg of albumin per gram of creatinine ≥30 mg/g) were chosen as the case and 105 women without DN were chosen as control. Dietary intakes were assessed by a semi‐quantitative food frequency questionnaire. Principal component analysis with varimax rotation was used to derive the micronutrient patterns. Patterns were divided into two groups of lower and higher than median. Logistic regression was used to discern and find the odds ratio (ORs) of DN, and its 95% confidence interval (CI) based on the micronutrient patterns in crude and adjusted model. Three patterns which were included, (1) mineral patterns such as chromium, manganese, biotin, vitamin B6, phosphorus, magnesium, selenium, copper, zinc, potassium, and iron, (2) water‐soluble vitamin patterns such as vitamin B5, B2, folate, B1, B3, B12, sodium and C, and (3) fat‐soluble vitamin patterns such as calcium, vitamin K, beta carotene, alpha tocopherol, alpha carotene, vitamin E, and vitamin A, were extracted. An inverse relationship was found between risk of DN and following mineral patterns and fat‐soluble vitamin patterns in adjusted model (ORs = 0.51 [95% CI 0.28–0.95], p = .03) and (ORs = 0.53 [95% CI 0.29–0.98], p = .04), respectively. No relationship was seen between water‐soluble vitamin patterns and risk of DN in crude and adjusted model but the significance was decreased in adjusted model. The risk of DN was 47% decreased after high adherence of fat‐soluble vitamin patterns. In addition, we saw a 49% decrease of risk of DN in high adherence group of mineral patterns. The findings confirm that renal‐protective dietary patterns can reduce risk of DN
    corecore