5 research outputs found

    Development of a novel setup for direct colorimetric visualization of elemental mercury vapor adsorption on colloidal gold nanoparticles

    Get PDF
    ABSTRACT Mercury is a toxic, persistent, and bio-accumulative pollutant that has adverse effects on environmental and human health. Various studies have been conducted to monitor different forms of mercury. The objective of this study was to develop a novel setup for assessing gas phase elemental mercury vapor adsorption using colloidal gold nanoparticles solutions that display a characteristic surface plasmon resonance absorption peak in the visible spectrum. The UV-VIS-NIR spectrographs of gold nanoparticles blue shifts after exposure to mercury vapor. The surface plasmon resonances (SPR) of ∼4 and ∼30 nm gold nanoparticles were appeared with the sharp peaks at 515 and 528 nm respectively. The mercury vapor adsorbed in gold nanoparticles was related to the size. The amounts of mercury vapor adsorbed per grams of ∼4 and ∼30 nm gold nanoparticles solutions were obtained 1100 µg•g-1 and 1300 µg•g-1 respectively. A proposed novel setup based on UV-Vis spectroscopic undertaken to provide simplicity, use facilitating, potentially inexpensive, and sensitive enough is a suitable system for mercury vapor capture in many fields. It was demonstrated that the amount mercury adsorbed has been related to the sizes of gold nanoparticles. The color change was observed, when elemental mercury vapor adsorbed on the gold nanoparticles

    Comparative study of cost-benefit integrated system of water spary with industrial ventilation and bag filters in a minerals processing company

    No full text
    Introduction: Control of fugitative dust from mining process and application of an appropriate and economical system for dust collecting is essential. The goal of this study was cost-benefit analysis of an integrated systems and compare to bag filter in a crushing plant of a mining company. Methods: A local exhaust ventilation system for capture of emitted particlees, a water spray for dust suppresion at sources and parallel Stairmand model cyclones as dust colletor were designed and installed based on the standards and guidelines. Then, efficiency of wetting and industrial ventilation system for control of ambient dust personal exposure and environmental emission have evaluated as integrated and alone. Finally, cost-benefit analysis of this system was compared to bag filter. Results: The efficiency of this system for control personal exposure repairable particles and emitted dust to ambient air was 87% and 95% for plant 1 and 88% and 95% for plant 2, respectively. The concentration of emitted emitted dust from stack to environment were 121.28 mg/m3 and 112/68 mg/m3 for plant 1 and 2, respectively. The capital, operational and maintence costs of this option was 217 and 0.992 billion rials lower than bag filter. Also, annuall collected dust by cyclones was worth 518 million rial. Conclusion: According to results, integrated system had a significant impact on emitted dust in workplace and environment. The economical analysis domonstrated 73% and 80% savings in capital and operational costs compared to bag filter. Total costs of implented project will be compensated at 220 day with recovered dusts, therefore, in the same condition, it can be suggested as the favourable and economical solution

    Evaluation of local exhaust ventilation system performance for control of Fe2O3 dust at an iron making unit

    No full text
    Introduction: Adherence to the design values and ventilation standards (VS) after installing and also maintaining continuous work of ventilation system with maximum performance throughout its life are amongst the reasons of ventilation systems monitoring. Therefore, the aim of this study was to evaluate performance of local exhaust ventilation system for control of dust by measuring the operating parameters and also to compare it with ventilation standards (VS) and design values. Material and Method: The present research is a descriptive and cross-sectional study, conducted in three sections of measuring, monitoring and evaluating the operating parameters on hoods, channels and fan of ventilation system based on the current status of the system, documentation (design), and recommended standards (VS). Static pressure, velocity pressure, surface area, and flow rate were measured based on the recommendations of various sources and ACGIH industrial ventilation manual, and the data were compared with the design and recommended values, using the SPSS software version 16.   Result: The results of paired sample t-test between flow rate and velocities of design and current status, showed significant differences in various parts. Accordingly, the results revealed a reduction of more than 50% in the design duct velocity compared to the current duct velocity, while design duct velocity is 1.3 more than the standard duct velocity of current status, and current duct velocity is about 65% of standard duct velocity. Conclusion: The reduction and nonconformity of the results of measurements of operating parameters (after a minimum of two decades) with design and standard values are corroborant and sufficient reason for obstructions, abrasions, leaks, imbalance of system ducts and their inefficiency in some branches. Since there is no base line measurements for system (supposing that the system worked with maximum amounts of setup time), one of the reasons for these changes can be attributed to lack of schedule for regular and appropriate maintenance

    Efficiency Assessment of Local Exhaust Ventilation Hoods System for Control of Fe2O3 Dust in the process of Oxide Screen Unit at iron making in steel industry

    No full text
    Background & Objectives : Local exhaust ventilation system (LEV) is one of the most common engineering controls methods for the chemical agents in workplaces. This study aimed to determine the efficiency assessment of the LEV system for control of Fe2O3 dust in the process of oxide screen unit at iron making in steel industry . Methods : The LEV system with an extensive network of ducting including 17 hoods was investigated in a cross-sectional study. The First, variations and contradictions of the system and process were compared versus documentation (system plans), then hood Efficiency Assessment accomplished by using of the dust concentration measurement besides of the each hood (source), at two status ON and OFF of LEV system (Repeat three times), by NIOSH 500 method. Results : Result of statistical test between the concentration of pollutants at two status ON/OFF of LEV system, in 7 of 17 hoods, didn’t show significantly different (P <0.05). Enclosed hood at the material falling from the tank to the feeder, with 85% efficiency and 3.3±1.5mg/m3 concentration at ON status was the highest efficiency. Two hoods, one enclosed hood at material falling from the Feeder into the screen and other unenclosed at material falling from conveyor to conveyor (small size at below screen), both with 2% efficiency and the 243.2±73.5 and 3462.4±1339 mg/m3 concentration demonstrated the lowest efficiency at ON status. Also the highest concentration of contaminants was at the unenclosed hood installed in the place of pellets falling from the conveyor into the tank with 5.03g/m3 and efficiency of 7%. Conclusion : The few hoods of the investigated LEV did not have appropriate performance and had different efficiency. Even, some hoods (branches) show negative efficiency due to return of contaminant from the hood to workplace area

    Effect of TiO2-ZnO/GAC on by-product distribution of CVOCs decomposition in a NTP-assisted catalysis system

    Get PDF
    In this study, the catalytic effect of TiO2-ZnO/GAC coupled with non-thermal plasma was investigated on the byproducts distribution of decomposition of chlorinated VOCs in gas streams. The effect of specific input energy, and initial gas composition was examined in a corona discharge reactor energized by a high frequency pulsed power supply. Detected by-products for catalytic NTP at 750 J L-1 included CO, CO2, Cl2, trichloroacetaldehyde, as well as trichlorobenzaldehyde with chloroform feeding, while they were dominated by CO, CO2, and lower abundance of trichlorobenzaldehyde and Cl2 with chlorobenzene introduction. Some of the by-products such as O3, NO, NO2, and COCl2 disappeared totally over TiO2-ZnO/GAC. Furthermore, the amount of heavy products such as trichlorobenzaldehyde decreased significantly in favor of small molecules such as CO, CO2, and Cl2 with the hybrid process. The selectivity towards COx soared up to 77 over the catalyst at 750 J L-1 and 100 ppm of chlorobenzene. © by Farshid Ghorbani-Shahna 2015
    corecore