3,444 research outputs found

    Quiet Clean Short-haul Experimental Engine (QCSEE). Double-annular clean combustor technology development report

    Get PDF
    A sector combustor technology development program was conducted to define an advanced double annular dome combustor sized for use in the quiet clean short haul experimental engine (QCSEE). A design which meets the emission goals, and combustor performance goals of the QCSEE engine program was developed. Key design features were identified which resulted in substantial reduction in carbon monoxide and unburned hydrocarbon emission levels at ground idle operating conditions, in addition to very low nitric oxide emission levels at high power operating conditions. Their significant results are reported

    Characterization of Hardness and Elastic Modulus of a Pharmaceutical Material for Multiple Crystal Orientations

    Get PDF
    Nanoindentation has made it possible to test material properties of extremely brittle molecular crystals, which include many pharmaceuticals. An antifungal, griseofulvin, is tested to determine differences in hardness and elastic modulus for different crystal orientations. Hardness and elastic modulus are determined by nanoindentation on single crystals that are rotated in 15° intervals. There are differences in hardness at rotation degrees of 45°, 60°, and 75° from the 0° orientation and differences in elastic modulus at rotation degrees of 15°, 60°, and 75° from the 0° orientation. It is also found that the elastic modulus and hardness values of the 75° rotation are only similar to the 60° rotation. Griseofulvin displays anisotropy in hardness and elastic modulus, which implies that different crystal rotations activate different slip systems. Further work is needed to correlate rotation angle with the crystal structure as well as confirm these findings on another crystal

    The Thin Skull Plaintiff Concept: Evasive or Persuasive

    Get PDF

    Influence of antisymmetric exchange interaction on quantum tunneling of magnetization in a dimeric molecular magnet Mn6

    Get PDF
    We present magnetization measurements on the single molecule magnet Mn6, revealing various tunnel transitions inconsistent with a giant-spin description. We propose a dimeric model of the molecule with two coupled spins S=6, which involves crystal-field anisotropy, symmetric Heisenberg exchange interaction, and antisymmetric Dzyaloshinskii-Moriya exchange interaction. We show that this simplified model of the molecule explains the experimentally observed tunnel transitions and that the antisymmetric exchange interaction between the spins gives rise to tunneling processes between spin states belonging to different spin multiplets.Comment: 5 pages, 4 figure

    A Model for Hospital Discharge Preparation: From Case Management to Care Transition

    Get PDF
    There has been a proliferation of initiatives to improve discharge processes and outcomes for the transition from hospital to home and community-based care. Operationalization of these processes has varied widely as hospitals have customized discharge care into innovative roles and functions. This article presents a model for conceptualizing the components of hospital discharge preparation to ensure attention to the full range of processes needed for a comprehensive strategy for hospital discharge

    Improved and Perfect Actions in Discrete Gravity

    Full text link
    We consider the notion of improved and perfect actions within Regge calculus. These actions are constructed in such a way that they - although being defined on a triangulation - reproduce the continuum dynamics exactly, and therefore capture the gauge symmetries of General Relativity. We construct the perfect action in three dimensions with cosmological constant, and in four dimensions for one simplex. We conclude with a discussion about Regge Calculus with curved simplices, which arises naturally in this context.Comment: 28 pages, 2 figure

    Magnetization dynamics in the single-molecule magnet Fe8 under pulsed microwave irradiation

    Full text link
    We present measurements on the single molecule magnet Fe8 in the presence of pulsed microwave radiation at 118 GHz. The spin dynamics is studied via time resolved magnetization experiments using a Hall probe magnetometer. We investigate the relaxation behavior of magnetization after the microwave pulse. The analysis of the experimental data is performed in terms of different contributions to the magnetization after-pulse relaxation. We find that the phonon bottleneck with a characteristic relaxation time of 10 to 100 ms strongly affects the magnetization dynamics. In addition, the spatial effect of spin diffusion is evidenced by using samples of different sizes and different ways of the sample's irradiation with microwaves.Comment: 14 pages, 12 figure

    Process for derivatizing carbon nanotubes with diazonium species and compositions thereof

    Get PDF
    Methods for the chemical modification of carbon nanotubes involve the derivatization of multi- and single-wall carbon nanotubes, including small diameter (ca. 0.7 nm) single-wall carbon nanotubes, with diazonium species. The method allows the chemical attachment of a variety of organic compounds to the side and ends of carbon nanotubes. These chemically modified nanotubes have applications in polymer composite materials, molecular electronic applications, and sensor devices. The methods of derivatization include electrochemical induced reactions, thermally induced reactions, and photochemically induced reactions. Moreover, when modified with suitable chemical groups, the derivatized nanotubes are chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as, mechanical strength or electrical conductivity) to the properties of the composite material as a whole. Furthermore, when modified with suitable chemical groups, the groups can be polymerized to form a polymer that includes carbon nanotubes

    Process for attaching molecular wires and devices to carbon nanotubes and compositions thereof

    Get PDF
    The present invention is directed towards processes for covalently attaching molecular wires and molecular electronic devices to carbon nanotubes and compositions thereof. Such processes utilize diazonium chemistry to bring about this marriage of wire-like nanotubes with molecular wires and molecular electronic devices

    Process for making polymers comprising derivatized carbon nanotubes and compositions thereof

    Get PDF
    The present invention incorporates new processes for blending derivatized carbon nanotubes into polymer matrices to create new polymer/composite materials. When modified with suitable chemical groups using diazonium chemistry, the nanotubes can be made chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as mechanical strength) to the properties of the composite material as a whole. To achieve this, the derivatized (modified) carbon nanotubes are physically blended with the polymeric material, and/or, if desired, allowed to react at ambient or elevated temperature. These methods can be utilized to append functionalities to the nanotubes that will further covalently bond to the host polymer matrix, or directly between two tubes themselves. Furthermore, the nanotubes can be used as a generator of polymer growth, wherein the nanotubes are derivatized with a functional group that is an active part of a polymerization process, which would also result in a composite material in which the carbon nanotubes are chemically involved
    • …
    corecore