2 research outputs found

    Biotin-independent strains of Escherichia coli for enhanced streptavidin production

    Get PDF
    Biotin is an archetypal vitamin used as cofactor for carboxylation reactions found in all forms of life. However, biotin biosynthesis is an elaborate multi-enzymatic process and metabolically costly. Moreover, many industrially relevant organisms are incapable of biotin synthesis resulting in the requirement to supplement defined media. Here we describe the creation of biotin-independent strains of Escherichia coli and Corynebacterium glutamicum through installation of an optimized malonyl-CoA bypass, which re-routes natural fatty acid synthesis, rendering the previously essential vitamin completely obsolete. We utilize biotin-independent E. coli for the production of the high-value protein streptavidin which was hitherto restricted because of toxic effects due to biotin depletion. The engineered strain revealed significantly improved streptavidin production resulting in the highest titers and productivities reported for this protein to date

    Directed evolution of biofuel-responsive biosensors for automated optimization of branched-chain alcohol biosynthesis

    No full text
    The biosynthesis of short-chain alcohols is a carbon-neutral alternative to petroleum-derived production, but strain screening operations are encumbered by laborious analytics. Here, we built, characterized and applied whole cell biosensors by directed evolution of the transcription factor AlkS for screening microbial strain libraries producing industrially relevant alcohols. A selected AlkS variant was applied for in situ product detection in two screening applications concerning key steps in alcohol production. Further, the biosensor strains enabled the implementation of an automated, robotic platform-based workflow with data clustering, which readily allowed the identification of significantly improved strain variants for isopentanol production
    corecore