267 research outputs found
Gas Component Transport Across the Soil-Atmosphere Interface for Gases of Different Density: Experiments and Modeling
We investigate the influence of near-surface wind conditions on subsurface gas transport and on soil-atmosphere gas exchange for gases of different density. Results of a sand tank experiment are supported by a numerical investigation with a fully coupled porous medium-free flow model, which accounts for wind turbulence. The experiment consists of a two-dimensional bench-scale soil tank containing homogeneous sand and an overlying wind tunnel. A point source was installed at the bottom of the tank. Gas concentrations were measured at multiple horizontal and vertical locations. Tested conditions include four wind velocities (0.2/1.0/2.0/2.7 m/s), three different gases (helium: light, nitrogen: neutral, and carbon dioxide: heavy), and two transport cases (1: steady-state gas supply from the point source; 2: transport under decreasing concentration gradient, subsequent to termination of gas supply). The model was used to assess flow patterns and gas fluxes across the soil surface. Results demonstrate that flow and transport in the vicinity of the surface are strongly coupled to the overlying wind field. An increase in wind velocity accelerates soil-atmosphere gas exchange. This is due to the effect of the wind profile on soil surface concentrations and due to wind-induced advection, which causes subsurface horizontal transport. The presence of gases with pronounced density difference to air adds additional complexity to the transport through the wind-affected soil layers. Wind impact differs between tested gases. Observed transport is multidimensional and shows that heavy as well as light gases cannot be treated as inert tracers, which applies to many gases in environmental studies. © 2020. The Authors
Where Does the Buck Stop? A Framework Analysis of Systematic Barriers and Supports to Effective Literacy Instructional Practices
Many claim that elementary school teachers fail to teach children to adequately read, but few ask teachers why this problem persists. This study illuminates the voices of the teachers as they shared their perceptions of which factors supported or hindered their best practices in literacy instruction. Forty-four elementary school teachers across the United States responded to an open-ended questionnaire detailing the people, structures, political, and fiscal supports and barriers to what they perceived as a comprehensive approach to literacy instruction. Using diagnostic and prognostic frames to structure teachers\u27 responses, findings from this study provide direct implications for administration at the school, district, and state levels as to where teachers perceive financial and personnel concentration should be to provide the best results in literacy instruction
Endothelial Progenitor Cells and Cardiovascular Events in Patients with Chronic Kidney Disease – a Prospective Follow-Up Study
BACKGROUND: Endothelial progenitor cells (EPCs) mediate vascular repair and regeneration. Their number in peripheral blood is related to cardiovascular events in individuals with normal renal function. METHODS: We evaluated the association between functionally active EPCs (cell culture) and traditional cardiovascular risk factors in 265 patients with chronic kidney disease stage V receiving hemodialysis therapy. Thereafter, we prospectively assessed cardiovascular events, e.g. myocardial infarction, percutaneous transluminal coronary angioplasty (including stenting), aorto-coronary bypass, stroke and angiographically verified stenosis of peripheral arteries, and cardiovascular death in this cohort. RESULTS: In our patients EPCs were related only to age (r=0.154; p=0.01). During a median follow-up period of 36 months 109 (41%) patients experienced a cardiovascular event. In a multiple Cox regression analysis, we identified EPCs (p=0.03) and patient age (p=0.01) as the only independent variables associated with incident cardiovascular events. Moreover, a total of 70 patients died during follow-up, 45 of those due to cardiovascular causes. Log rank test confirmed statistical significance for EPCs concerning incident cardiovascular events (p=0.02). CONCLUSIONS: We found a significant association between the number of functionally active EPCs and cardiovascular events in patients with chronic kidney disease. Thus, defective vascular repair and regeneration may be responsible, at least in part, for the enormous cardiovascular morbidity in this population
A reconfigurable real-time compressive-sampling camera for biological applications
Many applications in biology, such as long-term functional imaging of neural and cardiac systems, require continuous high-speed imaging. This is typically not possible, however, using commercially available systems. The frame rate and the recording time of high-speed cameras are limited by the digitization rate and the capacity of on-camera memory. Further restrictions are often imposed by the limited bandwidth of the data link to the host computer. Even if the system bandwidth is not a limiting factor, continuous high-speed acquisition results in very large volumes of data that are difficult to handle, particularly when real-time analysis is required. In response to this issue many cameras allow a predetermined, rectangular region of interest (ROI) to be sampled, however this approach lacks flexibility and is blind to the image region outside of the ROI. We have addressed this problem by building a camera system using a randomly-addressable CMOS sensor. The camera has a low bandwidth, but is able to capture continuous high-speed images of an arbitrarily defined ROI, using most of the available bandwidth, while simultaneously acquiring low-speed, full frame images using the remaining bandwidth. In addition, the camera is able to use the full-frame information to recalculate the positions of targets and update the high-speed ROIs without interrupting acquisition. In this way the camera is capable of imaging moving targets at high-speed while simultaneously imaging the whole frame at a lower speed. We have used this camera system to monitor the heartbeat and blood cell flow of a water flea (Daphnia) at frame rates in excess of 1500 fps
Evaluation of the zucker diabetic fatty (ZDF) rat as a model for human disease based on urinary peptidomic profiles
Representative animal models for diabetes-associated vascular complications are extremely relevant in assessing potential therapeutic drugs. While several rodent models for type 2 diabetes (T2D) are available, their relevance in recapitulating renal and cardiovascular features of diabetes in man is not entirely clear. Here we evaluate at the molecular level the similarity between Zucker diabetic fatty (ZDF) rats, as a model of T2D-associated vascular complications, and human disease by urinary proteome analysis. Urine analysis of ZDF rats at early and late stages of disease compared to age- matched LEAN rats identified 180 peptides as potentially associated with diabetes complications. Overlaps with human chronic kidney disease (CKD) and cardiovascular disease (CVD) biomarkers were observed, corresponding to proteins marking kidney damage (eg albumin, alpha-1 antitrypsin) or related to disease development (collagen). Concordance in regulation of these peptides in rats versus humans was more pronounced in the CVD compared to the CKD panels. In addition, disease-associated predicted protease activities in ZDF rats showed higher similarities to the predicted activities in human CVD. Based on urinary peptidomic analysis, the ZDF rat model displays similarity to human CVD but might not be the most appropriate model to display human CKD on a molecular level
Low oxygen tension primes aortic endothelial cells to the reparative effect of tissue-protective cytokines
Erythropoietin (EPO) has both erythropoietic and tissue-protective properties. The EPO analogues carbamylated EPO (CEPO) and pyroglutamate helix B surface peptide (pHBSP) lack the erythropoietic activity of EPO but retain the tissue-protective properties that are mediated by a heterocomplex of EPO receptor (EPOR) and the β common receptor (βCR). We studied the action of EPO and its analogues in a model of wound healing where a bovine aortic endothelial cells (BAECs) monolayer was scratched and the scratch closure was assessed over 24 h under different oxygen concentrations. We related the effects of EPO and its analogues on repair to their effect on BAECs proliferation and migration (evaluated using a micro-Boyden chamber). EPO, CEPO and pHBSP enhanced scratch closure only at lower oxygen (5%), while their effect at atmospheric oxygen (21%) was not significant. The mRNA expression of EPOR was doubled in 5% compared to 21% oxygen, and this was associated with increased EPOR assessed by immunofluorescence and Western blot. By contrast βCR mRNA levels were similar in 5% and 21% oxygen. EPO and its analogues increased both BAECs proliferation and migration, suggesting that both may be involved in the reparative process. The priming effect of low oxygen tension on the action of tissue-protective cytokines may be of relevance to vascular disease, including atherogenesis and restenosis
BLISS: an artificial language for learnability studies
To explore neurocognitive mechanisms underlying the human language faculty, cognitive scientists use artificial languages to control more precisely the language learning environment and to study selected aspects of natural languages. Artificial languages applied in cognitive studies are usually designed ad hoc, to only probe a specific hypothesis, and they include a miniature grammar and a very small vocabulary. The aim of the present study is the construction of an artificial language incorporating both syntax and semantics, BLISS. Of intermediate complexity, BLISS mimics natural languages by having a vocabulary, syntax, and some semantics, as defined by a degree of non-syntactic statistical dependence between words. We quantify, using information theoretical measures, dependencies between words in BLISS sentences as well as differences between the distinct models we introduce for semantics. While modeling English syntax in its basic version, BLISS can be easily varied in its internal parametric structure, thus allowing studies of the relative learnability of different parameter sets
GW501516, a PPARδ Agonist, Ameliorates Tubulointerstitial Inflammation in Proteinuric Kidney Disease via Inhibition of TAK1-NFκB Pathway in Mice
Peroxisome proliferator-activated receptors (PPARs) are a nuclear receptor family of ligand-inducible transcription factors, which have three different isoforms: PPARα, δ and γ. It has been demonstrated that PPARα and γ agonists have renoprotective effects in proteinuric kidney diseases; however, the role of PPARδ agonists in kidney diseases remains unclear. Thus, we examined the renoprotective effect of GW501516, a PPARδ agonist, in a protein-overload mouse nephropathy model and identified its molecular mechanism. Mice fed with a control diet or GW501516-containing diet were intraperitoneally injected with free fatty acid (FFA)-bound albumin or PBS(−). In the control group, protein overload caused tubular damages, macrophage infiltration and increased mRNA expression of MCP-1 and TNFα. These effects were prevented by GW501516 treatment. In proteinuric kidney diseases, excess exposure of proximal tubular cells to albumin, FFA bound to albumin or cytokines such as TNFα is detrimental. In vitro studies using cultured proximal tubular cells showed that GW501516 attenuated both TNFα- and FFA (palmitate)-induced, but not albumin-induced, MCP-1 expression via direct inhibition of the TGF-β activated kinase 1 (TAK1)-NFκB pathway, a common downstream signaling pathway to TNFα receptor and toll-like receptor-4. In conclusion, we demonstrate that GW501516 has an anti-inflammatory effect in renal tubular cells and may serve as a therapeutic candidate to attenuate tubulointerstitial lesions in proteinuric kidney diseases
- …