5 research outputs found

    Inner and outer edge states in graphene rings: A numerical investigation

    Full text link
    We numerically investigate quantum rings in graphene and find that their electronic properties may be strongly influenced by the geometry, the edge symmetries and the structure of the corners. Energy spectra are calculated for different geometries (triangular, hexagonal and rhombus-shaped graphene rings) and edge terminations (zigzag, armchair, as well as the disordered edge of a round geometry). The states localized at the inner edges of the graphene rings describe different evolution as a function of magnetic field when compared to those localized at the outer edges. We show that these different evolutions are the reason for the formation of sub-bands of edge states energy levels, separated by gaps (anticrossings). It is evident from mapping the charge densities that the anticrossings occur due to the coupling between inner and outer edge states.Comment: 8 pages, 7 figures. Figures in low resolution due to size requirements - higher quality figures on reques

    Resonant tunneling through protected quantum dots at phosphorene edges

    Full text link
    We theoretically investigate phosphorene zigzag nanorribons as a platform for constriction engineering. In the presence of a constriction at the upper edge, quantum confinement of edge protected states reveals resonant tunnelling Breit-Wigner transmission peaks, if the upper edge is uncoupled to the lower edge. Coupling between edges in thin constrictions gives rise to Fano-like and anti-resonances in the transmission spectrum of the system.Comment: 8 pages,7 figure

    Third edge for a graphene nanoribbon: A tight-binding model calculation

    Full text link
    The electronic and transport properties of an extended linear defect embedded in a zigzag nanoribbon of realistic width are studied, within a tight binding model approach. Our results suggest that such defect profoundly modify the properties of the nanoribbon, introducing new conductance quantization values and modifying the conductance quantization thresholds. The linear defect along the nanoribbon behaves as an effective third edge of the system, which shows a metallic behavior, giving rise to new conduction pathways that could be used in nanoscale circuitry as a quantum wire.Comment: 6 pages, 6 figures. Two new figures and a few references adde

    Dirac Spectrum in Piecewise Constant One-Dimensional Potentials

    Get PDF
    We study the electronic states of graphene in piecewise constant potentials using the continuum Dirac equation appropriate at low energies, and a transfer matrix method. For superlattice potentials, we identify patterns of induced Dirac points which are present throughout the band structure, and verify for the special case of a particle-hole symmetric potential their presence at zero energy. We also consider the cases of a single trench and a p-n junction embedded in neutral graphene, which are shown to support confined states. An analysis of conductance across these structures demonstrates that these confined states create quantum interference effects which evidence their presence.Comment: 10 pages, 12 figures, additional references adde
    corecore