867 research outputs found

    Allocative Efficiency of Resource use on Beekeeping in Chitwan District of Nepal

    Full text link
    Agriculture is facing with increasing pollinators decline all over the world affecting the functioning of regulatory and production service of pollination in adverse manner. Study on ways to conserve pollinating agents like bee is crucial in modern intensive agriculture. In this context a study was conducted to estimate the productivity and resource use efficiency of bee keeping in Chitwan district of Nepal. The study used data collected from randomly selected 48 bee keepers using face to face interview technique in the year 2014. Descriptive statistics, gross margin analysis, benefit cost analysis and multiple regression analysis using Cob-Douglas form were employed to achieve study objectives. It was found that farmers were rearing honey bee on an average of about 34 hives per farm with annual productivity of bee products equivalent to 36 Kg honey per hive. Gross margin of beekeeping in the research area was found to be NRs. 3111.55 per hive with undiscounted benefit cost ratio of 1.71. Human labour use, expenditure on sugar, drugs and comb foundation and; migration cost were significantly contributing to the productivity of beekeeping and were required to increase their use by 39%, 34% and 74%, respectively to achieve optimum profit. It was suggested to increase the level of all variable inputs through loan, subsidy and insurance to promote beekeeping enterprise in the study area for ensuring optimum profit to farmers and conservation of the most important agent of pollination

    Two quantum analogues of Fisher information from a large deviation viewpoint of quantum estimation

    Get PDF
    We discuss two quantum analogues of Fisher information, symmetric logarithmic derivative (SLD) Fisher information and Kubo-Mori-Bogoljubov (KMB) Fisher information from a large deviation viewpoint of quantum estimation and prove that the former gives the true bound and the latter gives the bound of consistent superefficient estimators. In another comparison, it is shown that the difference between them is characterized by the change of the order of limits.Comment: LaTeX with iopart.cls, iopart12.clo, iopams.st

    Quantum state estimation and large deviations

    Full text link
    In this paper we propose a method to estimate the density matrix \rho of a d-level quantum system by measurements on the N-fold system. The scheme is based on covariant observables and representation theory of unitary groups and it extends previous results concerning the estimation of the spectrum of \rho. We show that it is consistent (i.e. the original input state \rho is recovered with certainty if N \to \infty), analyze its large deviation behavior, and calculate explicitly the corresponding rate function which describes the exponential decrease of error probabilities in the limit N \to \infty. Finally we discuss the question whether the proposed scheme provides the fastest possible decay of error probabilities.Comment: LaTex2e, 40 pages, 2 figures. Substantial changes in Section 4: one new subsection (4.1) and another (4.2 was 4.1 in the previous version) completely rewritten. Minor changes in Sect. 2 and 3. Typos corrected. References added. Accepted for publication in Rev. Math. Phy

    Quantum Chi-Squared and Goodness of Fit Testing

    Get PDF
    The density matrix in quantum mechanics parameterizes the statistical properties of the system under observation, just like a classical probability distribution does for classical systems. The expectation value of observables cannot be measured directly, it can only be approximated by applying classical statistical methods to the frequencies by which certain measurement outcomes (clicks) are obtained. In this paper, we make a detailed study of the statistical fluctuations obtained during an experiment in which a hypothesis is tested, i.e. the hypothesis that a certain setup produces a given quantum state. Although the classical and quantum problem are very much related to each other, the quantum problem is much richer due to the additional optimization over the measurement basis. Just as in the case of classical hypothesis testing, the confidence in quantum hypothesis testing scales exponentially in the number of copies. In this paper, we will argue 1) that the physically relevant data of quantum experiments is only contained in the frequencies of the measurement outcomes, and that the statistical fluctuations of the experiment are essential, so that the correct formulation of the conclusions of a quantum experiment should be given in terms of hypothesis tests, 2) that the (classical) χ2\chi^2 test for distinguishing two quantum states gives rise to the quantum χ2\chi^2 divergence when optimized over the measurement basis, 3) present a max-min characterization for the optimal measurement basis for quantum goodness of fit testing, find the quantum measurement which leads both to the maximal Pitman and Bahadur efficiency, and determine the associated divergence rates.Comment: 22 Pages, with a new section on parameter estimatio

    Role of ambient air on photoluminescence and electrical conductivity of assembly of ZnO Nanoparticles

    Full text link
    Effect of ambient gases on photoluminescence (PL) and electrical conductivity of films prepared using ZnO nanoparticles (NPs) have been investigated. It is observed that NPs of size below 20 nm kept inside a chamber exhibit complete reduction in their visible PL when oxygen partial pressure of the surrounding gases is decreased by evacuation. However the visible PL from ZnO NPs is insensitive to other major gases present in the ambient air. The rate of change of PL intensity with pressure is inversely proportional to the ambient air pressure and increases when particle size decreases due to the enhanced surface to volume ratio. On the other hand an assembly of ZnO NPs behaves as a complete insulator in the presence of dry air and its major components like N2, O2 and CO2. Electrical conduction having resistivity ~102 - 103 {\Omega}m is observed in the presence of humid air. The depletion layer formed at the NP surface after acquiring donor electrons of ZnO by the adsorbed oxygen, has been found to control the visible PL and increases the contact potential barrier between the NPs which in turn enhances the resistance of the film.Comment: arXiv admin note: significant text overlap with arXiv:1008.249

    Asymptotically optimal data analysis for rejecting local realism

    Full text link
    Reliable experimental demonstrations of violations of local realism are highly desirable for fundamental tests of quantum mechanics. One can quantify the violation witnessed by an experiment in terms of a statistical p-value, which can be defined as the maximum probability according to local realism of a violation at least as high as that witnessed. Thus, high violation corresponds to small p-value. We propose a prediction-based-ratio (PBR) analysis protocol whose p-values are valid even if the prepared quantum state varies arbitrarily and local realistic models can depend on previous measurement settings and outcomes. It is therefore not subject to the memory loophole [J. Barrett et al., Phys. Rev. A 66, 042111 (2002)]. If the prepared state does not vary in time, the p-values are asymptotically optimal. For comparison, we consider protocols derived from the number of standard deviations of violation of a Bell inequality and from martingale theory [R. Gill, arXiv:quant-ph/0110137]. We find that the p-values of the former can be too small and are therefore not statistically valid, while those derived from the latter are sub-optimal. PBR p-values do not require a predetermined Bell inequality and can be used to compare results from different tests of local realism independent of experimental details.Comment: 11 pages, 4 figures; Software implementation of the PBR analysis protocol and its user guide attached as ancillary files; minor changes (add the software disclaimer, etc.

    Inconsistency of the MLE for the joint distribution of interval censored survival times and continuous marks

    Full text link
    This paper considers the nonparametric maximum likelihood estimator (MLE) for the joint distribution function of an interval censored survival time and a continuous mark variable. We provide a new explicit formula for the MLE in this problem. We use this formula and the mark specific cumulative hazard function of Huang and Louis (1998) to obtain the almost sure limit of the MLE. This result leads to necessary and sufficient conditions for consistency of the MLE which imply that the MLE is inconsistent in general. We show that the inconsistency can be repaired by discretizing the marks. Our theoretical results are supported by simulations.Comment: 27 pages, 4 figure

    Integrated nutrient management in calendula (Calendula officinalis L.) grown in partially reclaimed sodic soil condition

    Get PDF
    To study the effect of nutrient management on growth and flower yield of Calendula, field experiments were carried out during 2009 and 2010. Results indicated that significantly higher plant height (40.6 cm), number of leaves (142) at 90 days, total number of flowers plant-1 (126), total fresh weight of flowers (87.5 q ha-1) and dry weight of flowers (25.0 q ha-1) were observed by the application of 10 t farmyard manure (FYM) + ½ NPK + spraying of micronutrients followed by sole application of recommended dose of inorganic fertilizer (i.e. NPK@ 80:30:30 kg ha-1) which was at par with application of half dose of recommended dose of inorganic fertilizer supplemented with half dose of organic fertilizer. Application of 20 t FYM ha-1 improved the soil physicochemical parameters i.e. pH, EC, organic carbon and available NPK in comparison to control. &nbsp
    corecore