4 research outputs found

    The phase space of last glacial inception:characterization and feedbacks via ensemble coupled ice/climate modelling

    Get PDF
    The feedbacks between ice sheets and the rest of the climate system are a major source of uncertainty in constraining future sea level change and perhaps aspects of future climate change. In the past, there is strong evidence that large and at times relatively abrupt changes in sea level and climate occurred. The past therefore offers a testable window that may help build confidence in projecting future changes. Climate models are used to study the evolution of ice and climate during glacial intervals. However, these models are either computationally expensive to run for glacial-scale periods, or are too simplified and miss key feedbacks between ice and the climate. To confidently model changes in the past, ensembles of transient model run on order 10 ky or longer are required. Therefore, a fast coupled ice-climate model with relevant feedbacks is required. Beyond last glacial maximum and especially beyond the range of accurate ¹⁴C dating (about 40-50 ka), constraints on past ice sheet evolution become sparse. The last glacial inception (herein including post inception peak retreat, thus covering the range of about 120 ka to 105 ka) is a poorly understood interval that includes both rapid ice sheet growth and subsequent decay. It thereby offers a challenging test for fully coupled ice and climate models. This thesis documents 3 specific contributions. 1) The fast fully coupled ice-climate model LCice 1.0 is documented. 2) Results from an ensemble of coupled transient simulations of the last glacial inception are presented. The ensemble provides a potential phase-space of ice and climate evolution during the last glacial inception. 3) Finally, multiple sensitivity experiments isolate the impacts of the two largest northern hemisphere ice sheets on climate and each other

    LCice 1.0 – a generalized Ice Sheet System Model coupler for LOVECLIM version 1.3: description, sensitivities, and validation with the Glacial Systems Model (GSM version D2017.aug17)

    Get PDF
    We have coupled an Earth system model of intermediate complexity (LOVECLIM) to the Glacial Systems Model (GSM) using the LCice 1.0 coupler. The coupling scheme is flexible enough to enable asynchronous coupling between any glacial cycle ice sheet model and (with some code work) any Earth system model of intermediate complexity (EMIC). This coupling includes a number of interactions between ice sheets and climate that are often neglected: dynamic meltwater runoff routing, novel downscaling for precipitation that corrects orographic forcing to the higher resolution ice sheet grid (“advective precipitation”), dynamic vertical temperature gradient, and ocean temperatures for sub-shelf melt. The sensitivity of the coupled model with respect to the selected parameterizations and coupling schemes is investigated. Each new coupling feature is shown to have a significant impact on ice sheet evolution. An ensemble of runs is used to explore the behaviour of the coupled model over a set of 2000 parameter vectors using present-day (PD) initial and boundary conditions. The ensemble of coupled model runs is compared against PD reanalysis data for atmosphere (2 m temperature, precipitation, jet stream, and Rossby number of jet), ocean (sea ice and Atlantic Meridional Overturning Circulation – AMOC), and Northern Hemisphere ice sheet thickness and extent. The parameter vectors are then narrowed by rejecting model runs (1700 CE to present) with regional land ice volume changes beyond an acceptance range. The selected subset forms the basis for ongoing work to explore the spatial–temporal phase space of the last two glacial cycles

    Coupling the Glacial Systems Model (GSM) to LOVECLIM: description, sensitivities, and validation

    Get PDF
    We have coupled an Earth Systems Model of Intermediate Complexity (LOVECLIM) to the Glacial Systems Model (GSM). This coupling includes a number of interactions between ice sheets and climate that are often ignored: dynamic meltwater runoff routing, novel down-scaling for precipitation that corrects orographic forcing to the higher resolution ice sheet grid ("advective precipitation"), dynamic vertical temperature gradient, and ocean temperatures for sub-shelf melt. The sensitivity of the coupled model with respect to the selected parameterizations and coupling schemes is investigated. Each new coupling feature has a significant impact on ice sheet evolution. An ensemble of runs is used to explore the behaviour of the coupled model over a set of 2000 parameter vectors using Present-Day (PD) initial and boundary conditions. The ensemble of coupled model runs is compared against PD reanalysis data for atmosphere (surface temperature, precipitation, jet-stream and Rossby number of jet), ocean (sea ice, sea surface temperature, and AMOC), and Northern Hemisphere ice sheet thickness and extent. The parameter vectors are then narrowed by rejecting model runs (1700 CE to present) with regional land ice volume changes beyond an acceptance range. The selected sub-set forms the basis for ongoing work to explore the spatial-temporal phase space of the last two glacial cycles

    Last glacial inception trajectories for the Northern Hemisphere from coupled ice and climate modelling

    Get PDF
    We present an ensemble of last glacial inception (LGI) simulations for the Northern Hemisphere that captures a significant fraction of inferred ice volume changes within proxy uncertainties. This ensemble was performed with LCice 1.0, a coupled ice sheet and climate model, varying parameters of both climate and ice sheet components, as well as the coupling between them. Certain characteristics of the spatiotemporal pattern of ice growth and subsequent retreat in both North America (NA) and Eurasia (EA) are sensitive to parameter changes while others are not. We find that the initial inception of ice over NA and EA is best characterized by the nucleation of ice at high-latitude and high-elevation sites. Subsequent spreading and merger along with large-scale conversion of snowfields dominate in different sectors. The latter plays an important role in the merging of eastern and western ice regions in NA. The inception peak ice volume in the ensemble occurs approximately at 111 ka and therefore lags the summer 60∘ N insolation minimum by more than 3 kyr. Ice volumes consistently peak earlier over EA than NA. The inception peak in North America is characterized by a merged Laurentide and Cordilleran ice sheet, with the Davis Strait covered in ice in ∼80 % of simulations. Ice also bridges Greenland and Iceland in all runs by 114 ka and therefore blocks the Denmark Strait. This latter feature would thereby divert the East Greenland Current and Denmark Strait overflow with a potentially significant impact on ocean circulation. The Eurasian ice sheet at its inception peak varies across ensemble runs between a continuous ice sheet and multiple smaller ice caps. In both continents, the colder high latitudes (i.e. Ellesmere and Svalbard) tend to grow ice through the entire simulation (to 102 ka), while lower latitudes lose ice after ∼110 ka. We find temperature decreases over the initial phases of the inception lead to the expansion of NA ice sheet area and that subsequent precipitation increases contribute to its thickening. EA ice sheet area also expands with decreasing temperatures, but sea ice limits any increases in precipitation, leading to an earlier retreat away from the EA maximum ice sheet volume. We also examine the extent to which the capture of both LGI ice growth and retreat constrains the coupled ice–climate model sensitivity to changing atmospheric pCO2. The 55-member sub-ensemble that meets our criteria for “acceptable” ice growth and retreat has an equilibrium climate sensitivity lower bound that is 0.3 ∘C higher than that of the full ensemble. This suggests some potential value of fully coupled ice–climate modelling of the last glacial inception to constrain future climate change
    corecore