82 research outputs found

    Ontology based Scene Creation for the Development of Automated Vehicles

    Full text link
    The introduction of automated vehicles without permanent human supervision demands a functional system description, including functional system boundaries and a comprehensive safety analysis. These inputs to the technical development can be identified and analyzed by a scenario-based approach. Furthermore, to establish an economical test and release process, a large number of scenarios must be identified to obtain meaningful test results. Experts are doing well to identify scenarios that are difficult to handle or unlikely to happen. However, experts are unlikely to identify all scenarios possible based on the knowledge they have on hand. Expert knowledge modeled for computer aided processing may help for the purpose of providing a wide range of scenarios. This contribution reviews ontologies as knowledge-based systems in the field of automated vehicles, and proposes a generation of traffic scenes in natural language as a basis for a scenario creation.Comment: Accepted at the 2018 IEEE Intelligent Vehicles Symposium, 8 pages, 10 figure

    Towards Efficient Hazard Identification in the Concept Phase of Driverless Vehicle Development

    Full text link
    The complex functional structure of driverless vehicles induces a multitude of potential malfunctions. Established approaches for a systematic hazard identification generate individual potentially hazardous scenarios for each identified malfunction. This leads to inefficiencies in a purely expert-based hazard analysis process, as each of the many scenarios has to be examined individually. In this contribution, we propose an adaptation of the strategy for hazard identification for the development of automated vehicles. Instead of focusing on malfunctions, we base our process on deviations from desired vehicle behavior in selected operational scenarios analyzed in the concept phase. By evaluating externally observable deviations from a desired behavior, we encapsulate individual malfunctions and reduce the amount of generated potentially hazardous scenarios. After introducing our hazard identification strategy, we illustrate its application on one of the operational scenarios used in the research project UNICARagilagil.Comment: Published in 2020 IEEE Intelligent Vehicles Symposium (IV), Las Vegas, NV, USA, October 19-November 13, 202

    Functional Safety Concept Generation within the Process of Preliminary Design of Automated Driving Functions at the Example of an Unmanned Protective Vehicle

    Get PDF
    Structuring the early design phase of automotive systems is an important part of efficient and successful development processes. Today, safety considerations (e.g., the safety life cycle of ISO 26262) significantly affect the course of development. Preliminary designs are expressed in functional system architectures, which are required to form safety concepts. Thus, mapping tasks and work products to a reference process during early design stages is an important part of structuring the system development. This contribution describes the systematic creation and notation of the functional safety concept within the concept phase of development of an unmanned protective vehicle within the research project aFAS. Different stages of preliminary design and dependencies between them are displayed by the work products created and used. The full set of functional safety requirements and an excerpt of the safety argument structure of the SAE level 4 application are presented

    Kinematically complete experimental study of Compton scattering at helium atoms near the ionization threshold

    Full text link
    Compton scattering is one of the fundamental interaction processes of light with matter. Already upon its discovery [1] it was described as a billiard-type collision of a photon kicking a quasi-free electron. With decreasing photon energy, the maximum possible momentum transfer becomes so small that the corresponding energy falls below the binding energy of the electron. Then ionization by Compton scattering becomes an intriguing quantum phenomenon. Here we report a kinematically complete experiment on Compton scattering at helium atoms below that threshold. We determine the momentum correlations of the electron, the recoiling ion, and the scattered photon in a coincidence experiment finding that electrons are not only emitted in the direction of the momentum transfer, but that there is a second peak of ejection to the backward direction. This finding links Compton scattering to processes as ionization by ultrashort optical pulses [2], electron impact ionization [3,4], ion impact ionization [5,6], and neutron scattering [7] where similar momentum patterns occur.Comment: 7 pages, 4 figure

    Enabling time-resolved 2D spatial-coherence measurements using the Fourier-analysis method with an integrated curved-grating beam monitor

    Get PDF
    Direct 2D spatial-coherence measurements are increasingly gaining importance at synchrotron beamlines, especially due to present and future upgrades of synchrotron facilities to diffraction-limited storage rings. We present a method to determine the 2D spatial coherence of synchrotron radiation in a direct and particularly simple way by using the Fourier-analysis method in conjunction with curved gratings. Direct photon-beam monitoring provided by a curved grating circumvents the otherwise necessary separate determination of the illuminating intensity distribution required for the Fourier-analysis method. Hence, combining these two methods allows for time-resolved spatial-coherence measurements. As a consequence, spatial-coherence degradation effects caused by beamline optics vibrations, which is one of the key issues of state-of-the-art X-ray imaging and scattering beamlines, can be identified and analyzed. © 2020 Optical Society of America
    corecore