18 research outputs found

    Bladder cancer cells secrete while normal bladder cells express but do not secrete AGR2.

    Get PDF
    Anterior gradient 2 (AGR2) is a cancer-associated secreted protein found predominantly in adenocarcinomas. Given its ubiquity in solid tumors, cancer-secreted AGR2 could be a useful biomarker in urine or blood for early detection. However, normal organs express and might also secrete AGR2, which would impact its utility as a cancer biomarker. Uniform AGR2 expression is found in the normal bladder urothelium. Little AGR2 is secreted by the urothelial cells as no measurable amounts could be detected in urine. The urinary proteomes of healthy people contain no listing for AGR2. Likewise, the blood proteomes of healthy people also contain no significant peptide counts for AGR2 suggesting little urothelial secretion into capillaries of the lamina propria. Expression of AGR2 is lost in urothelial carcinoma, with only 25% of primary tumors observed to retain AGR2 expression in a cohort of lymph node-positive cases. AGR2 is secreted by the urothelial carcinoma cells as urinary AGR2 was measured in the voided urine of 25% of the cases analyzed in a cohort of cancer vs. non-cancer patients. The fraction of AGR2-positive urine samples was consistent with the fraction of urothelial carcinoma that stained positive for AGR2. Since cancer cells secrete AGR2 while normal cells do not, its measurement in body fluids could be used to indicate tumor presence. Furthermore, AGR2 has also been found on the cell surface of cancer cells. Taken together, secretion and cell surface localization of AGR2 are characteristic of cancer, while expression of AGR2 by itself is not

    Protein expression based multimarker analysis of breast cancer samples

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tissue microarray (TMA) data are commonly used to validate the prognostic accuracy of tumor markers. For example, breast cancer TMA data have led to the identification of several promising prognostic markers of survival time. Several studies have shown that TMA data can also be used to cluster patients into clinically distinct groups. Here we use breast cancer TMA data to cluster patients into distinct prognostic groups.</p> <p>Methods</p> <p>We apply weighted correlation network analysis (WGCNA) to TMA data consisting of 26 putative tumor biomarkers measured on 82 breast cancer patients. Based on this analysis we identify three groups of patients with low (5.4%), moderate (22%) and high (50%) mortality rates, respectively. We then develop a simple threshold rule using a subset of three markers (p53, Na-KATPase-β1, and TGF β receptor II) that can approximately define these mortality groups. We compare the results of this correlation network analysis with results from a standard Cox regression analysis.</p> <p>Results</p> <p>We find that the rule-based grouping variable (referred to as WGCNA*) is an independent predictor of survival time. While WGCNA* is based on protein measurements (TMA data), it validated in two independent Affymetrix microarray gene expression data (which measure mRNA abundance). We find that the WGCNA patient groups differed by 35% from mortality groups defined by a more conventional stepwise Cox regression analysis approach.</p> <p>Conclusions</p> <p>We show that correlation network methods, which are primarily used to analyze the relationships between gene products, are also useful for analyzing the relationships between patients and for defining distinct patient groups based on TMA data. We identify a rule based on three tumor markers for predicting breast cancer survival outcomes.</p

    Differential expression of anterior gradient gene AGR2 in prostate cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The protein AGR2 is a putative member of the protein disulfide isomerase family and was first identified as a homolog of the <it>Xenopus laevis </it>gene XAG-2. AGR2 has been implicated in a number of human cancers. In particular, AGR2 has previously been found to be one of several genes that encode secreted proteins showing increased expression in prostate cancer cells compared to normal prostatic epithelium.</p> <p>Methods</p> <p>Gene expression levels of AGR2 were examined in prostate cancer cells by microarray analysis. We further examined the relationship of AGR2 protein expression to histopathology and prostate cancer outcome on a population basis using tissue microarray technology.</p> <p>Results</p> <p>At the RNA and protein level, there was an increase in AGR2 expression in adenocarcinoma of the prostate compared to morphologically normal prostatic glandular epithelium. Using a tissue microarray, this enhanced AGR2 expression was seen as early as premalignant PIN lesions. Interestingly, within adenocarcinoma samples, there was a slight trend toward lower levels of AGR2 with increasing Gleason score. Consistent with this, relatively lower levels of AGR2 were highly predictive of disease recurrence in patients who had originally presented with high-stage primary prostate cancer (P = 0.009).</p> <p>Conclusions</p> <p>We have shown for the first time that despite an increase in AGR2 expression in prostate cancer compared to non-malignant cells, relatively lower levels of AGR2 are highly predictive of disease recurrence following radical prostatectomy.</p

    Ribonucleotide Reductase Subunit M2 Predicts Survival in Subgroups of Patients with Non-Small Cell Lung Carcinoma: Effects of Gender and Smoking Status

    No full text
    <div><p>Background</p><p>Ribonucleotide reductase catalyzes the conversion of ribonucleotide diphosphates to deoxyribonucleotide diphosphates. The functional enzyme consists of two subunits - one large (RRM1) and one small (RRM2 or RRM2b) subunit. Expression levels of each subunit have been implicated in prognostic outcomes in several different types of cancers.</p><p>Experimental Design</p><p>Immunohistochemistry for RRM1 and RRM2 was performed on a lung cancer tissue microarray (TMA) and analyzed. 326 patients from the microarray were included in this study.</p><p>Results</p><p>In non-small cell lung cancer (NSCLC), RRM2 expression was strongly predictive of disease-specific survival in women, non-smokers and former smokers who had quit at least 10 years prior to being diagnosed with lung cancer. Higher expression was associated with worse survival. This was not the case for men, current smokers and those who had stopped smoking for shorter periods of time. RRM1 was not predictive of survival outcomes in any subset of the patient group.</p><p>Conclusion</p><p>RRM2, but not RRM1, is a useful predictor of survival outcome in certain subsets of NSCLC patients.</p></div

    Kaplan Meier curves for RRM1 and RRM2 in all patients.

    No full text
    <p>(A) cytoplasmic RRM2, split by median expression levels (p = 0.002, hazard ratio = 1.70). (B) cytoplasmic RRM1, split by median expression levels (p = 0.497, hazard ratio = 1.12).</p

    Barplots for relative RRM1 and RRM2 protein expression levels in cytoplasm (integrated intensity, scale from 0 to 3) by (A) histology and (B) grade.

    No full text
    <p>Both RRM1 and RRM2 expression were higher in squamous carcinoma than adenocarcinoma (p < 10<sup>–5</sup>). RRM1 expression did not correlate with tumor grade (rho = 0.04, p = 0.55) while RRM2 expression correlated positively with grade (rho = 0.44, p < 10<sup>–5</sup> for cytoplasm and rho = 0.36, p < 10<sup>–5</sup> for nucleus).</p
    corecore