221 research outputs found

    UC: a language for the connection machine

    Get PDF
    n designing parallel languages, the concern for defining a simple virtual machine must be balanced against the need to efficiently map a program on a specific architecture. UC addresses this problem by separating the programming task from efficiency considerations. UC programs are designed using a small set of constructs that include reduction, parallel assignment, and fixed-point computation. The language also provides a map section that may optionally be used by a programmer to specify data mappings for the program. The authors describe the UC constructs and their implementation on the Connection Machine. They also present measurements of the compiler for simple benchmarks

    A Novel Approach for Distributed Simulation of Wireless Mobile Systems

    Full text link

    Toy articles of manufacture comprising spontaneously wettable fibers

    Get PDF
    This invention relates to an article of manufacture consisting of a toy having a plurality of synthetic fibers capable of spontaneously transporting water on the surface thereof, said fibers satisfying the following equation wherein .theta..sub.a is the advancing contact angle of water measured on a flat film made from the same material as the fiber and having the same surface treatment, if any, X is a shape factor of the fiber cross-section that satisfies the following equation ##EQU1## wherein P.sub.w is the wetted perimeter of the fiber and r is the radius of the circumscribed circle circumscribing the fiber cross-section and D is the minor axis dimension across the fiber cross-section

    Dose-Intensified Stereotactic Ablative Radiation for Localized Prostate Cancer

    Get PDF
    Purpose: Stereotactic ablative radiation (SAbR) has been increasingly used in prostate cancer (PCa) given its convenience and cost efficacy. Optimal doses remain poorly defined with limited prospective comparative trials and long-term safety/efficacy data at higher dose levels. We analyzed toxicity and outcomes for SAbR in men with localized PCa at escalated 45 Gy in 5 fractions. Methods and Materials: This study retrospectively analyzed men from 2015 to 2019 with PCa who received linear-accelerator-based SAbR to 45 Gy in 5 fractions, along with perirectal hydrogel spacer, fiducial placement, and MRI-based planning. Disease control outcomes were calculated from end of treatment. Minimally important difference (MID) assessing patient-reported quality of life was defined as greater than a one-half standard deviation increase in American Urological Association (AUA) symptom score after SAbR. Results: Two-hundred and forty-nine (249) low-, intermediate-, and high-risk PCa patients with median follow-up of 14.9 months for clinical toxicity were included. Acute urinary grade II toxicity occurred in 20.4% of patients. Acute grade II GI toxicity occurred in 7.3% of patients. For follow-up \u3e 2 years (n = 69), late GU and GI grade β‰₯III toxicity occurred in 5.8% and 1.5% of patients, respectively. MID was evident in 31.8%, 23.4%, 35.8%, 37.0%, 33.3%, and 26.7% of patients at 3, 6, 12, 24, 36, and 48 months, respectively. The median follow-up for biochemical recurrence was 22.6 months with biochemical failure-free survival of 100% at 1 year (n = 226) and 98.7% for years 2 (n = 113) and 3 (n = 54). Conclusions: SAbR for PCa at 45 Gy in 5 fractions shows an encouraging safety profile. Prospective studies with longer follow-up are warranted to establish this dose regimen as standard of care for PCa

    Rigorous System Design: The BIP Approach

    Get PDF
    Rigorous system design requires the use of a single powerful component framework allowing the representation of the designed system at different levels of detail, from application software to its implementation. This is essential for ensuring the overall coherency and correctness. The paper introduces a rigorous design flow based on the BIP (Behavior, Interaction, Priority) component framework. This design flow relies on several, tool-supported, source-to-source transformations allowing to progressively and correctly transform high level application software towards efficient implementations for specific platforms

    A RAC/CDC-42–Independent GIT/PIX/PAK Signaling Pathway Mediates Cell Migration in C. elegans

    Get PDF
    P21 activated kinase (PAK), PAK interacting exchange factor (PIX), and G protein coupled receptor kinase interactor (GIT) compose a highly conserved signaling module controlling cell migrations, immune system signaling, and the formation of the mammalian nervous system. Traditionally, this signaling module is thought to facilitate the function of RAC and CDC-42 GTPases by allowing for the recruitment of a GTPase effector (PAK), a GTPase activator (PIX), and a scaffolding protein (GIT) as a regulated signaling unit to specific subcellular locations. Instead, we report here that this signaling module functions independently of RAC/CDC-42 GTPases in vivo to control the cell shape and migration of the distal tip cells (DTCs) during morphogenesis of the Caenorhabditis elegans gonad. In addition, this RAC/CDC-42–independent PAK pathway functions in parallel to a classical GTPase/PAK pathway to control the guidance aspect of DTC migration. Among the C. elegans PAKs, only PAK-1 functions in the GIT/PIX/PAK pathway independently of RAC/CDC42 GTPases, while both PAK-1 and MAX-2 are redundantly utilized in the GTPase/PAK pathway. Both RAC/CDC42–dependent and –independent PAK pathways function with the integrin receptors, suggesting that signaling through integrins can control the morphology, movement, and guidance of DTC through discrete pathways. Collectively, our results define a new signaling capacity for the GIT/PIX/PAK module that is likely to be conserved in vertebrates and demonstrate that PAK family members, which are redundantly utilized as GTPase effectors, can act non-redundantly in pathways independent of these GTPases

    Nck adapter proteins: functional versatility in T cells

    Get PDF
    Nck is a ubiquitously expressed adapter protein that is almost exclusively built of one SH2 domain and three SH3 domains. The two isoproteins of Nck are functionally redundant in many aspects and differ in only few amino acids that are mostly located in the linker regions between the interaction modules. Nck proteins connect receptor and non-receptor tyrosine kinases to the machinery of actin reorganisation. Thereby, Nck regulates activation-dependent processes during cell polarisation and migration and plays a crucial role in the signal transduction of a variety of receptors including for instance PDGF-, HGF-, VEGF- and Ephrin receptors. In most cases, the SH2 domain mediates binding to the phosphorylated receptor or associated phosphoproteins, while SH3 domain interactions lead to the formation of larger protein complexes. In T lymphocytes, Nck plays a pivotal role in the T cell receptor (TCR)-induced reorganisation of the actin cytoskeleton and the formation of the immunological synapse. However, in this context, two different mechanisms and adapter complexes are discussed. In the first scenario, dependent on an activation-induced conformational change in the CD3Ξ΅ subunits, a direct binding of Nck to components of the TCR/CD3 complex was shown. In the second scenario, Nck is recruited to the TCR complex via phosphorylated Slp76, another central constituent of the membrane proximal activation complex. Over the past years, a large number of putative Nck interactors have been identified in different cellular systems that point to diverse additional functions of the adapter protein, e.g. in the control of gene expression and proliferation

    Regulation of thymocyte positive selection and motility by GIT2

    Get PDF
    Thymocytes are highly motile cells that migrate under the influence of chemokines in distinct thymic compartments as they mature. The motility of thymocytes is tightly regulated; however, the molecular mechanisms that control thymocyte motility are not well understood. Here we report that G protein–coupled receptor kinase-interactor 2 (GIT2) was required for efficient positive selection. Notably, Git2βˆ’/βˆ’ double-positive thymocytes showed greater activation of the small GTPase Rac, actin polymerization and migration toward the chemokines CXCL12 (SDF-1) and CCL25 in vitro. By two-photon laser-scanning microscopy, we found that the scanning activity of Git2βˆ’/βˆ’ thymocytes was compromised in the thymic cortex, which suggests GIT2 has a key role in regulating the chemokine-mediated motility of double-positive thymocytes.National Institutes of Health (U.S.) (R01AI064227)Leukemia & Lymphoma Society of Americ
    • …
    corecore