57 research outputs found

    Environmental Programming of Susceptibility and Resilience to Stress in Adulthood in Male Mice

    Get PDF
    Epidemiological evidence identifies early life adversity as a significant risk factor for the development of mood disorders. Much evidence points to the role of early life experience in susceptibility and, to a lesser extent, resilience, to stress in adulthood. While many models of these phenomena exist in the literature, results are often conflicting and a systematic comparison of multiple models is lacking. Here, we compare effects of nine manipulations spanning the early postnatal through peri-adolescent periods, both at baseline and following exposure to chronic social defeat stress in adulthood, in male mice. By applying rigorous criteria across three commonly used measures of depression- and anxiety-like behavior, we identify manipulations that increase susceptibility to subsequent stress in adulthood and other pro-resilient manipulations that mitigate the deleterious consequences of adult stress. Our findings point to the importance of timing of early life stress and provide the foundation for future studies to probe the neurobiological mechanisms of risk and resilience conferred by variation in the early life environment

    Dynamic regulation of NMDAR function in the adult brain by the stress hormone corticosterone

    Get PDF
    Stress and corticosteroids dynamically modulate the expression of synaptic plasticity at glutamatergic synapses in the developed brain. Together with alpha-amino-3-hydroxy-methyl-4-isoxazole propionic acid receptors (AMPAR), N-methyl-D-aspartate receptors (NMDAR) are critical mediators of synaptic function and are essential for the induction of many forms of synaptic plasticity. Regulation of NMDAR function by cortisol/corticosterone (CORT) may be fundamental to the effects of stress on synaptic plasticity. Recent reports of the efficacy of NMDAR antagonists in treating certain stress-associated psychopathologies further highlight the importance of understanding the regulation of NMDAR function by CORT. Knowledge of how corticosteroids regulate NMDAR function within the adult brain is relatively sparse, perhaps due to a common belief that NMDAR function is stable in the adult brain. We review recent results from our laboratory and others demonstrating dynamic regulation of NMDAR function by CORT in the adult brain. In addition, we consider the issue of how differences in the early life environment may program differential sensitivity to modulation of NMDAR function by CORT and how this may influence synaptic function during stress. Findings from these studies demonstrate that NMDAR function in the adult hippocampus remains sensitive to even brief exposures to CORT and that the capacity for modulation of NMDAR may be programmed, in part, by the early life environment. Modulation of NMDAR function may contribute to dynamic regulation of synaptic plasticity and adaptation in the face of stress, however, enhanced NMDAR function may be implicated in mechanisms of stress-related psychopathologies including depression

    Integrating behavioural, imaging and transcriptional profiling to discover the impact of midlife stress in Alzheimer\u27s disease

    Get PDF
    We will be integrating this cognitive assessment with imaging of brain structure and function to understand the mechanisms by which a risk factor, in this case modifiable life stress, influences Alzheimer\u27s disease-related decline. The resultant data will be integrated and disseminated using a new open-access neuroinformatics platform developed at Western (MouseBytes.ca), which will become a unique resource for open science investigations and set the standard for sharing of behavioural data across the world.https://ir.lib.uwo.ca/brainscanprojectsummaries/1028/thumbnail.jp

    Modulation of Synaptic Plasticity by Stress Hormone Associates with Plastic Alteration of Synaptic NMDA Receptor in the Adult Hippocampus

    Get PDF
    Stress exerts a profound impact on learning and memory, in part, through the actions of adrenal corticosterone (CORT) on synaptic plasticity, a cellular model of learning and memory. Increasing findings suggest that CORT exerts its impact on synaptic plasticity by altering the functional properties of glutamate receptors, which include changes in the motility and function of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid subtype of glutamate receptor (AMPAR) that are responsible for the expression of synaptic plasticity. Here we provide evidence that CORT could also regulate synaptic plasticity by modulating the function of synaptic N-methyl-D-aspartate receptors (NMDARs), which mediate the induction of synaptic plasticity. We found that stress level CORT applied to adult rat hippocampal slices potentiated evoked NMDAR-mediated synaptic responses within 30 min. Surprisingly, following this fast-onset change, we observed a slow-onset (>1 hour after termination of CORT exposure) increase in synaptic expression of GluN2A-containing NMDARs. To investigate the consequences of the distinct fast- and slow-onset modulation of NMDARs for synaptic plasticity, we examined the formation of long-term potentiation (LTP) and long-term depression (LTD) within relevant time windows. Paralleling the increased NMDAR function, both LTP and LTD were facilitated during CORT treatment. However, 1–2 hours after CORT treatment when synaptic expression of GluN2A-containing NMDARs is increased, bidirectional plasticity was no longer facilitated. Our findings reveal the remarkable plasticity of NMDARs in the adult hippocampus in response to CORT. CORT-mediated slow-onset increase in GluN2A in hippocampal synapses could be a homeostatic mechanism to normalize synaptic plasticity following fast-onset stress-induced facilitation

    Trial protocol: a multicentre randomised trial of first-line treatment pathways for newly diagnosed immune thrombocytopenia: standard steroid treatment versus combined steroid and mycophenolate. The FLIGHT trial

    Get PDF
    Introduction Immune thrombocytopenia (ITP) is an autoimmune condition that may cause thrombocytopenia-related bleeding. Current first-line ITP treatment is with high-dose corticosteroids but frequent side effects, heterogeneous responses and high relapse rates are significant problems with only 20% remaining in sustained remission with this approach. Mycophenolate mofetil (MMF) is often used as the next treatment with efficacy in 50%–80% of patients and good tolerability but can take up to 2 months to work. Objective To test the hypothesis that MMF combined with corticosteroid is a more effective first-line treatment for immune thrombocytopenia (ITP) than current standard of corticosteroid alone. Design Multicentre, UK-based, open-label, randomised controlled trial. Setting Haematology departments in secondary care. Participants We plan to recruit 120 patients >16 years old with a diagnosis of ITP and a platelet count <30x109/L who require first-line treatment. Patients will be followed up for a minimum of 12 months following randomisation. Primary outcome Time from randomisation to treatment failure defined as platelets <30x109/L and a need for second-line treatment. Secondary outcomes Side effects, bleeding events, remission rates, time to relapse, time to next therapy, cumulative corticosteroid dose, rescue therapy, splenectomy, socioeconomic costs, patient-reported outcomes (quality of life, fatigue, impact of bleeding, care costs). Analysis The sample size of 120 achieves a 91.5% power to detect a doubling of the median time to treatment failure from 5 to 10 months. This will be expressed as an HR with 95% CI, median time to event if more than 50% have had an event and illustrated with Kaplan-Meier curves. Cost-effectiveness will be based on the first 12 months from diagnosis

    Threonine 149 Phosphorylation Enhances  ΔFosB Transcriptional Activity to Control Psychomotor Responses to Cocaine

    Get PDF
    Stable changes in neuronal gene expression have been studied as mediators of addicted states. Of particular interest is the transcription factor ΔFosB, a truncated and stable FosB gene product whose expression in nucleus accumbens (NAc), a key reward region, is induced by chronic exposure to virtually all drugs of abuse and regulates their psychomotor and rewarding effects. Phosphorylation at Ser[superscript 27] contributes to ΔFosB's stability and accumulation following repeated exposure to drugs, and our recent work demonstrates that the protein kinase CaMKIIα phosphorylates ΔFosB at Ser[superscript 27] and regulates its stability in vivo. Here, we identify two additional sites on ΔFosB that are phosphorylated in vitro by CaMKIIα, Thr[superscript 149] and Thr[superscript 180], and demonstrate their regulation in vivo by chronic cocaine. We show that phosphomimetic mutation of Thr[superscript 149] (T149D) dramatically increases AP-1 transcriptional activity while alanine mutation does not affect transcriptional activity when compared with wild-type (WT) ΔFosB. Using in vivo viral-mediated gene transfer of ΔFosB-T149D or ΔFosB-T149A in mouse NAc, we determined that overexpression of ΔFosB-T149D in NAc leads to greater locomotor activity in response to an initial low dose of cocaine than does WT ΔFosB, while overexpression of ΔFosB-T149A does not produce the psychomotor sensitization to chronic low-dose cocaine seen after overexpression of WT ΔFosB and abrogates the sensitization seen in control animals at higher cocaine doses. We further demonstrate that mutation of Thr[superscript 149] does not affect the stability of ΔFosB overexpressed in mouse NAc, suggesting that the behavioral effects of these mutations are driven by their altered transcriptional properties

    Circuit-wide Transcriptional Profiling Reveals Brain Region-Specific Gene Networks Regulating Depression Susceptibility

    Get PDF
    Depression is a complex, heterogeneous disorder and a leading contributor to the global burden of disease. Most previous research has focused on individual brain regions and genes contributing to depression. However, emerging evidence in humans and animal models suggests that dysregulated circuit function and gene expression across multiple brain regions drive depressive phenotypes. Here we performed RNA-sequencing on 4 brain regions from control animals and those susceptible or resilient to chronic social defeat stress at multiple time points. We employed an integrative network biology approach to identify transcriptional networks and key driver genes that regulate susceptibility to depressive-like symptoms. Further, we validated in vivo several key drivers and their associated transcriptional networks that regulate depression susceptibility and confirmed their functional significance at the levels of gene transcription, synaptic regulation and behavior. Our study reveals novel transcriptional networks that control stress susceptibility and offers fundamentally new leads for antidepressant drug discovery

    DCC confers susceptibility to depression-like behaviors in humans and mice and is regulated by miR-218

    Get PDF
    Variations in the expression of the Netrin-1 guidance cue receptor DCC (deleted in colorectal cancer) appear to confer resilience or susceptibility to psychopathologies involving prefrontal cortex (PFC) dysfunction.With the use of postmortem brain tissue, mouse models of defeat stress, and in vitro analysis, we assessed microRNA (miRNA) regulation of DCC and whether changes in DCC levels in the PFC lead to vulnerability to depression-like behaviors.We identified miR-218 as a posttranscriptional repressor of DCC and detected coexpression of DCC and miR-218 in pyramidal neurons of human and mouse PFC. We found that exaggerated expression of DCC and reduced levels of miR-218 in the PFC are consistent traits of mice susceptible to chronic stress and of major depressive disorder in humans. Remarkably, upregulation of Dcc in mouse PFC pyramidal neurons causes vulnerability to stress-induced social avoidance and anhedonia.These data are the first demonstration of microRNA regulation of DCC and suggest that, by regulating DCC, miR-218 may be a switch of susceptibility versus resilience to stress-related disorders

    Developmental Hippocampal Neuroplasticity in a Model of Nicotine Replacement Therapy during Pregnancy and Breastfeeding

    Get PDF
    The influence of developmental nicotine exposure on the brain represents an important health topic in light of the popularity of nicotine replacement therapy (NRT) as a smoking cessation method during pregnancy.In this study, we used a model of NRT during pregnancy and breastfeeding to explore the consequences of chronic developmental nicotine exposure on cerebral neuroplasticity in the offspring. We focused on two dynamic lifelong phenomena in the dentate gyrus (DG) of the hippocampus that are highly sensitive to the environment: granule cell neurogenesis and long-term potentiation (LTP).Pregnant rats were implanted with osmotic mini-pumps delivering either nicotine or saline solutions. Plasma nicotine and metabolite levels were measured in dams and offspring. Corticosterone levels, DG neurogenesis (cell proliferation, survival and differentiation) and glutamatergic electrophysiological activity were measured in pups.Juvenile (P15) and adolescent (P41) offspring exposed to nicotine throughout prenatal and postnatal development displayed no significant alteration in DG neurogenesis compared to control offspring. However, NRT-like nicotine exposure significantly increased LTP in the DG of juvenile offspring as measured in vitro from hippocampal slices, suggesting that the mechanisms underlying nicotine-induced LTP enhancement previously described in adult rats are already functional in pups.These results indicate that synaptic plasticity is disrupted in offspring breastfed by dams passively exposed to nicotine in an NRT-like fashion
    corecore