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Stable changes in neuronal gene expression have been studied as mediators of addicted states. Of particular interest is the transcription
factor �FosB, a truncated and stable FosB gene product whose expression in nucleus accumbens (NAc), a key reward region, is induced
by chronic exposure to virtually all drugs of abuse and regulates their psychomotor and rewarding effects. Phosphorylation at Ser 27

contributes to �FosB’s stability and accumulation following repeated exposure to drugs, and our recent work demonstrates that the
protein kinase CaMKII� phosphorylates �FosB at Ser 27 and regulates its stability in vivo. Here, we identify two additional sites on �FosB
that are phosphorylated in vitro by CaMKII�, Thr 149 and Thr 180, and demonstrate their regulation in vivo by chronic cocaine. We show
that phosphomimetic mutation of Thr 149 (T149D) dramatically increases AP-1 transcriptional activity while alanine mutation does not
affect transcriptional activity when compared with wild-type (WT) �FosB. Using in vivo viral-mediated gene transfer of �FosB-T149D or
�FosB-T149A in mouse NAc, we determined that overexpression of �FosB-T149D in NAc leads to greater locomotor activity in response
to an initial low dose of cocaine than does WT �FosB, while overexpression of �FosB-T149A does not produce the psychomotor
sensitization to chronic low-dose cocaine seen after overexpression of WT �FosB and abrogates the sensitization seen in control animals
at higher cocaine doses. We further demonstrate that mutation of Thr 149 does not affect the stability of �FosB overexpressed in mouse
NAc, suggesting that the behavioral effects of these mutations are driven by their altered transcriptional properties.
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Introduction
Drug addiction arises in part from altered gene expression in
discrete brain regions in response to chronic exposure to drugs of
abuse (Robison and Nestler, 2011). Increasing evidence suggests
that a subset of these gene expression changes are mediated by
�FosB, a Fos family transcription factor induced in multiple
brain regions specifically by chronic exposure to virtually all
drugs of abuse (Nestler, 2008; Perrotti et al., 2008). In nucleus

accumbens (NAc), �FosB expression increases locomotor and
rewarding responses to drugs of abuse (Kelz et al., 1999; Colby et
al., 2003), whereas blockade of �FosB transcriptional activity re-
duces drug reward (McClung and Nestler, 2003; Peakman et al.,
2003; Zachariou et al., 2006; Robison et al., 2013). NAc �FosB
also regulates other forms of reward. It accumulates in NAc with
sexual experience, sugar and high-fat diets, and calorie restric-
tion, and promotes reward to these stimuli (Pitchers et al., 2010,
2013; Been et al., 2013). Additionally, NAc �FosB is induced by
chronic stress and antidepressant treatment and mediates stress
resilience and antidepressant action (Vialou et al., 2010; Robison
et al., 2014).

These effects are mediated by numerous �FosB gene targets
(McClung and Nestler, 2003). Recent work has focused on �FosB
induction of CaMKII�, which is specific to D1-type medium
spiny neurons (MSNs) of NAc shell and mediates �FosB’s en-
hanced responses to cocaine and antidepressant-like actions
(Robison et al., 2013, 2014). NAc CaMKII regulates the psy-
chomotor effects of cocaine through AMPA receptor modulation
(Pierce et al., 1998), and recent work demonstrates that �FosB
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regulates NAc MSN glutamatergic synapse morphology and
function in a cell type-specific manner (Grueter et al., 2013), a
process long associated with the structural and catalytic roles of
CaMKII (Hell, 2014).

�FosB not only regulates CaMKII expression, it is also phos-
phorylated by CaMKII, establishing a feedforward loop engaged
by chronic cocaine that is essential for cocaine’s behavioral and
cellular effects (Robison et al., 2013). Previous studies demon-
strate that �FosB is a potent in vitro substrate for CaMKII� (KM

� 5.7 � 2.0 �M; KCAT � 2.3 � 0.3 min�1) with a stoichiometry
of phosphorylation indicating at least three separate substrate
sites (2.27 � 0.07 mol/mol; Robison et al., 2013). In the same
study, we identified Ser 27 as one of the CaMKII substrate sites, a
site previously shown to regulate the stability of �FosB in vitro
and in vivo (Ulery et al., 2006; Ulery-Reynolds et al., 2009). We
demonstrated further that overexpression of constitutively active
CaMKII promotes �FosB accumulation in vivo (Robison et al.,
2013), indicating that Ser 27 phosphorylation may be regulated by
CaMKII in the brain. However, the identity and function of the
other CaMKII phosphorylation sites within �FosB, and how they
might regulate �FosB activity and drug responses, remain un-
known. Here, we uncover two novel CaMKII phospho-sites
within �FosB, Thr 149, and Thr 180 and demonstrate that phos-
phorylation of Thr 149 is regulated in the brain by chronic cocaine,
dramatically increases �FosB-mediated gene transcription, and
promotes locomotor activation by cocaine in mice.

Materials and Methods
Animals. C57BL/6J male mice (The Jackson Laboratory), 7– 8 weeks old
and weighing 25–30 g, were habituated to the animal facility 1 week
before use and maintained at 22–25°C on a 12 h light/dark cycle. All
animals had access to food and water ad libitum. All experiments were
conducted in accordance with the guidelines of the Institutional Animal
Care and Use Committees at Icahn School of Medicine at Mount Sinai
and Michigan State University.

Mass spectrometry. Standard peptides were designed to mimic the
phospho or non-phospho forms of Thr 149, Thr 180, and Ser 199 �FosB.
After synthesis and purification, each “heavy” idiotypic peptide was dis-
solved in 50/50 acetonitrile/water buffer and sent for amino acid analysis
to determine absolute concentration of the synthetic peptide stock solu-
tion. Each heavy peptide was then directly infused into the 4000 QTRAP
mass spectrometer (MS) at Yale’s Keck Center to determine the best
collision energy for MS/MS fragmentation and two to four multiple re-
action monitoring (MRM) transitions. Next, the neat heavy peptides
were subjected to LCMS on the 4000 QTRAP to ensure peptide separa-
tion. The instrument was run in the triple quadrupole mode, with Q1 set
on the specific precursor m/z value (Q1 is not scanning) and Q3 set to the
specific m/z value corresponding to a specific fragment of that peptide. In
the MRM mode, a series of single reactions (precursor/fragment ion
transitions where the collision energy is tuned to optimize the intensity of
the fragment ions of interest) were measured sequentially, and the cycle
(typically 1–2 s) was looped throughout the entire time of the HPLC
separation. MRM transitions were determined from the MS/MS spectra
of the existing peptides. Two transitions per peptide, corresponding to
high-intensity fragment ions, were then selected and the collision energy
optimized to maximize signal strength of MRM transitions using auto-
mation software. Peaks resulting from standard peptides and �FosB
samples from the brains of saline-treated or cocaine-treated mice were
then compared to determine the absolute abundance of each peptide
form in the samples. Data analysis on LC-MRM data is performed using
AB MultiQuant 1.1 software.

Enrichment of �FosB from mouse brain. Mice were injected intraperi-
toneally with saline or cocaine (15 mg/kg) in their home cages once daily
for 7 d. Twenty four hours following the final injection, mice were de-
capitated without anesthesia to avoid effects of anesthetics on neuronal
protein levels and phospho-states. Brains were serially sliced in a 1.0 mm

matrix (Braintree Scientific) and NAc (ventral striatum) and dorsal stria-
tum were removed in PBS containing protease (Roche) and phosphatase
(Sigma-Aldrich) inhibitors using a 12 gauge punch and immediately
frozen on dry ice. Tissue was homogenized in PBS with 0.2% Triton
X-100 and centrifuged at 10,000 � g for 5 min at 4°C to remove insoluble
proteins. The soluble fractions from 10 mice were combined and con-
centrated by dialysis against 0.1 M HEPES, pH7.4, and 500 mM NaCl. The
resulting concentrated protein was separated by SDS-PAGE and bands
from 32 to 40 kDa were cut from the gel to enrich for �FosB (35–37 kDa).
Protein was extracted from the gel slices and subjected to mass spectro-
scopic analysis as described above.

DNA constructs. The luciferase reporter construct was 4 � AP-1/RSV-
Luc, which consists of a promoter region of four AP-1 consensus se-
quences in tandem with a minimal RSV promoter, and a luciferase
reporter gene under the control of this promoter (Ulery and Nestler,
2007). We used site-directed mutagenesis (Qiagen) to generate mutant
constructs encoding �FosB with Thr 149 or Thr 180 converted to Asp
(T149D and T180D) or to Ala (T149A and T180A) in a pcDNA3.1 back-
bone. WT or catalytically dead (Lys 42 to Met) CaMKII was also expressed
using the pcDNA3.1 backbone. All mutations were verified by
dideoxysequencing.

Luciferase activity assays. Neuro2a cells (N2a; American Type Culture
Collection) were cultured in EMEM (ATCC) supplemented with 10%
heat-inactivated fetal bovine serum (ATCC) in a 5% CO2 humidified
atmosphere at 37°C. Cells were plated into 12-well plates. Twenty-four
hours later (when cells were �95% confluent) cells were transiently
cotransfected with a combination of 4 � AP-1/RSV-Luc plasmid and
pcDNA3.1 plasmids (Life Technologies) containing WT or mutant
�FosB and/or CaMKII� constructs using Effectene (Qiagen). A total of
200 ng DNA was transfected per well. Approximately 48 h post transfec-
tion, cells were washed twice with 1 ml PBS and whole-cell lysates were
prepared using 180 �l lysis buffer provided with ONE-Glo Luciferase
Assay System (Promega). Fifty microliters of the lysate was removed for
Western blot analysis. The remaining lysates were incubated on ice for 5
min and the luciferase activity (luminescence) present in each sample
was assayed using the substrates and protocol included in the ONE-Glo
Luciferase Assay System. The luminescence of each sample was detected
in triplicate using Kodak autoradiography film and quantified using Im-
ageJ software (NIH). Luminescence was normalized to total �FosB ex-
pression as assessed by Western blot.

Viral-mediated gene transfer. Mice were anesthetized with a mixture of
ketamine (100 mg/kg) and xylazine (10 mg/kg) and prepared for stereo-
tactic surgery. Thirty-three gauge syringe needles (Hamilton) were used
to bilaterally infuse 0.5–1.0 �l of virus into NAc at a rate of 0.1 �l/min at
1.6 mm anterior, �1.5 mm lateral, and 4.4 mm ventral from bregma. We
used bicistronic p1005 HSV vectors expressing GFP alone or GFP plus
WT, T149D, or T149A �FosB. In this system, GFP expression is driven by
a cytomegalovirus promoter, whereas the select gene of interest is driven
by the IE4/5 promoter (Maze et al., 2010). In the locomotor experiment,
viral expression was confirmed during tissue collection using fluores-
cence microscopy (Leica) to visualize GFP and ensure targeting of the
NAc.

Locomotor activity assay. Locomotor activity was measured per pub-
lished protocols (Lobo et al., 2010) with minor modifications. Activity
was assessed in the x- and y-planes for horizontal ambulation in a 75 cm 2

chamber using EthoVision XT (Noldus). Twenty-four hours before un-
dergoing surgery, mice were habituated to the locomotor chamber for 60
min with no injection. Three days after surgery (day 0) animals were
injected intraperitoneally with saline and placed in locomotor chamber
for 45 min at which time baseline locomotor was recorded. On days 4 – 8
after surgery (days 1–5), animals were injected with cocaine (3.75 mg/kg)
and analyzed for 45 min.

Immunohistochemistry. Adult male mice were terminally anesthetized
(15% chloral hydrate) and transcardially perfused with PBS followed by
4% formalin. Brains were then postfixed overnight in formalin at 4°C and
cryoprotected in 30% sucrose at 4°C until isotonic. Brains were sliced in
35 �m sections on a freezing microtome and immunohistochemistry for
�FosB expression was performed essentially as described previously
(Perrotti et al., 2008). Briefly, slices were blocked for 1 h in 0.3% Triton
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X-100 and 3% normal goat serum at room
temperature then incubated overnight at 4°C
in 1% normal goat serum, 0.3% Triton X-100,
and pan-FosB antibody (Santa Cruz Biotech-
nology; sc-48, 1:1000). Sections were washed,
placed for 1.5 h in a 1:200 dilution of Cy3-
conjugated goat anti-rabbit IgG (Millipore),
and slices were mounted under glass coverslips
for visualization on a confocal microscope
(Axiovert 100; LSM 510 with META emission
wavelengths of 488, 543, and 633 nm; Zeiss).
Images captured in both the red (FosB) and
green (GFP) channels were quantified for in-
tensity using ImageJ software (NIH).

Statistical analysis. All analysis was per-
formed using Prism software (GraphPad). Stu-
dent’s t tests were used for all pairwise
comparisons (indicated in Results where the
t value is given), and one-way or two-way
ANOVAs were used for all multiple compari-
sons (indicated in Results where the F value is
given), followed by Bonferroni or Tukey post
hoc tests where appropriate.

Results
Novel CaMKII phospho-sites
within �FosB
To identify novel CaMKII phospho-sites
within �FosB, we performed in vitro
phosphorylation of purified His6-�FosB
with purified CaMKII� as previously de-
scribed (Robison et al., 2013). Incubation
of �FosB with CaMKII in the presence,
but not absence, of ATP caused an in-
crease in the apparent molecular weight of
�FosB consistent with phosphorylation at
multiple sites (Fig. 1A). MS analyses of
these samples revealed phosphorylation
of �FosB at Thr 149, Thr 180, and Ser 199

(Fig. 1B--D), along with multiple addi-
tional sites (data not shown). All three of
these sites are within the leucine-zipper
domain of �FosB (Fig. 2A), and thus
could regulate dimerization, DNA-binding,
or transcriptional activation by the AP-1
complex.

Because both Thr 149 and Thr 180 were
previously predicted as possible CaMKII
phospho-sites by bioinformatics analysis
(Ulery et al., 2006), and the CaMKII con-
sensus phosphorylation sequence at both
sites is perfectly conserved from zebrafish
through humans (Fig. 2B), we focused on
validation of these sites as bona fide
CaMKII substrates. We generated labeled
synthetic peptides mimicking the phospho-
and non-phospho-states of Thr149, Thr180,

Figure 1. Identification of novel sites of �FosB phosphorylation in vitro. A, Coomassie-stained SDS-PAGE gel with purified
His6-�FosB exposed to CaMKII alone, ATP alone, or CaMKII and ATP. Note the upward shift in electrophoretic mobility of �FosB

4

when exposed to CaMKII and ATP (black arrow). B–D, The pre-
cursor (inset) and fragment spectra of TiO2-enriched phospho-
peptides detected from �FosB after in vitro phosphorylation
by CaMKII. After using both trypsin digestion and enrichment
of the phosphopeptide samples by TiO2, analysis reveals phos-
phorylation of Thr 149 (B), Thr 180 (C), and Ser 199 (D).
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and Ser 199 and then used known quanti-
ties of these peptides as standards in MRM
analyses of �FosB before and after in vitro
phosphorylation by CaMKII. Subsequent
quantitation confirms that Thr 149 and
Thr 180 are potent substrates for CaMKII,
while Ser 199 phosphorylation is entirely
unaffected by coincubation with CaMKII
(Fig. 2C).

�FosB Thr 149 phosphorylation in brain
is increased by chronic cocaine
Previous studies have demonstrated that
�FosB is a phosphoprotein in the brain
(Ulery et al., 2006). Therefore, we next
sought to determine whether �FosB is
phosphorylated at Thr 149 or Thr 180 in the
brain, and whether these phospho-sites
are regulated by a behaviorally relevant
stimulus, chronic cocaine exposure. Adult
(8 weeks) male mice were administered 20
mg/kg cocaine or saline vehicle intraperi-
toneally once per day for 7 d. Twenty-four
hours after the last injection striatum was
harvested and proteins were homoge-
nized in the presence of protease and
phosphatase inhibitors, concentrated by
dialysis, and proteins of �32–38 kDa were
purified by SDS-PAGE gel extraction. We
then performed MRM analyses on the pu-
rified proteins using the same labeled pep-
tides described above and observed peaks
corresponding to phospho-Thr 149 and
phospho-Thr 180 in striatal extracts (Fig.
3). Importantly, the amount of Thr 149

phosphopeptide was significantly higher
in the proteins purified from cocaine-
treated animals than in those from saline-treated controls (Fig.
3D; t(4) � 3.203, p � 0.0328). Levels of phospho-Thr 180 were
lower, and although there was a trend for an increase with co-
caine, it was not significant (Fig. 3H). We therefore focused the
remainder of our studies on Thr 149 phosphorylation.

�FosB T 149 phosphorylation increases AP-1
transcriptional activity
Because Thr 149 is within the basic region of �FosB, which is
important for DNA binding (Glover and Harrison, 1995; Fig.
2A), we hypothesized that Thr 149 phosphorylation may regulate
�FosB-mediated gene transcription. We constructed mutants of
�FosB mimicking phosphorylation at Thr 149 and Thr 180 (T149D
and T180D) and assayed their effects on gene transcription using
an AP-1-luciferase reporter assay in Neuro2a cells. While T180D
�FosB induces a twofold increase in AP-1-luciferase activity,
which is comparable to WT �FosB’s effect, T149D �FosB expres-
sion caused a dramatic 17-fold increase in AP-1 luciferase activity
(Fig. 4), much stronger than that of WT or T180D �FosB (F(6,12)

� 2.062; p 	 0.0001). Coexpressing WT CaMKII with WT �FosB
increased induction of AP-1 activity to an extent similar to that
observed with T149D �FosB, 15-fold greater than WT �FosB
alone. However, cotransfection with catalytically dead K42R
CaMKII caused a much smaller though still significant increase,
suggesting that CaMKII catalytic activity is the primary but not
sole means by which it regulates �FosB transcriptional activity.

These data suggest that CaMKII-mediated phosphorylation of
�FosB at Thr 149 robustly increases AP-1 transcriptional activity
of the protein.

�FosB Thr 149 phosphorylation does not affect in vivo
protein stability
Previous data demonstrate that CaMKII overexpression can en-
hance the stability of �FosB in mouse NAc in vivo (Robison et al.,
2013), though the mechanism of this enhancement was not de-
termined. Because phosphorylation of �FosB Ser 27 is known to
increase �FosB stability in vitro and in vivo (Ulery et al., 2006;
Ulery-Reynolds et al., 2009), and Ser 27 is a potent CaMKII sub-
strate (Robison et al., 2013), we hypothesized that CaMKII phos-
phorylation of Ser 27 was responsible for this enhancement of
stability. Nevertheless, we sought to determine whether Thr 149

phosphorylation could also regulate �FosB stability in mouse
brain. We constructed herpes simplex virus (HSV) vectors that
express GFP along with WT, phospho-absent (T149A), or phos-
phomimetic (T149D) �FosB and injected them into the NAc of
adult male mice (Fig. 5). Animals were analyzed 3, 7, or 14 d after
virus injection, and �FosB expression levels were assessed by
immunofluorescence and quantitative image analysis (Fig. 6A).
No significant difference in �FosB expression was found between
WT �FosB and either mutant at any of the three time points
assessed (Fig. 6B). Thus, unlike Ser 27, Thr 149 phosphorylation
does not alter �FosB stability in vivo.

Figure 2. �FosB Thr 149 and Thr 180 are potent CaMKII substrates. A, Schematic of �FosB protein structure depicting functional
domains and known phosphorylation sites. B, Amino acid sequence alignments showing conservation of FosB sequences sur-
rounding Thr 149 (red) and Thr 180 (blue) in human, mouse, cow, and zebrafish, including the �3 arginine (gray) that confers
CaMKII substrate specificity. C, MRM analysis of �FosB phosphorylated in vitro by CaMKII reveals that Thr 149 and Thr 180, but not
Ser 199, are potent CaMKII substrates. Error bars represent SEM.
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�FosB Thr 149 phosphorylation mediates the psychomotor
effects of cocaine
Viral and transgenic �FosB overexpression enhances the
locomotor-activating effects of cocaine, whereas viral blockade of
endogenous FosB transcriptional activity reduces cocaine’s loco-
motor effects (Kelz et al., 1999; Grueter et al., 2013; Robison et al.,
2013). We used HSV-mediated overexpression of WT or mutant

�FosB to determine whether Thr 149

phosphorylation affects the ability of
�FosB to regulate locomotor responses to
cocaine. None of the �FosB vectors had a
significant effect on baseline locomotor
activity (Fig. 7A). We used a low dose of
cocaine (3.75 mg/kg) over 5 d that does
not normally elicit locomotor sensitiza-
tion (Grueter et al., 2013) to maximize
chances of seeing increased behavioral re-
sponses. We found a significant effect of
virus (F(3,113) � 3.373; p 	 0.0005) and
day (F(2,113) � 19.08; p 	 0.0001) on loco-
motor activity. As expected, animals over-
expressing GFP alone showed no
locomotor activation to initial or repeated
low doses of cocaine, while animals ex-
pressing WT �FosB displayed increased
locomotor activity only after repeated co-
caine administration (post hoc analysis,
day 5 vs day 1; t(17) � 3.098; p � 0.0065;
Fig. 7B). Animals expressing T149D
�FosB exhibited increased locomotor ac-
tivity to cocaine following the first admin-
istration (post hoc analysis, day 1 vs day 0;
t(24) � 4.137; p 	 0.0005; Fig. 7B), which
did not increase further with continued
exposure (post hoc analysis, day 1 vs day 5;
t(22) � 0.384; p � 0.705; Fig. 7B). In con-
trast, animals expressing T149A �FosB
did not sensitize to cocaine at all, thus ap-
pearing phenotypically similar to GFP-
alone controls. These data indicate that
�FosB Thr 149 phosphorylation can con-
fer an increased initial sensitivity to the
locomotor-activating effects of low-dose
cocaine, which mimics that seen after re-
peated administration of a low dose, and
is necessary for �FosB-mediated increases
in locomotor sensitization during re-
peated administration.

To determine whether Thr 149 phos-
phorylation is also necessary for the loco-
motor sensitization that typically occurs
in response to a higher dose of cocaine, we
administered 5 d of 7.5 mg/kg cocaine to
mice with HSV-mediated NAc overex-
pression of GFP alone, WT �FosB, or
T149A �FosB (Fig. 8). As before, these
mice had no difference in baseline loco-
motor response to a saline injection (Fig.
8A), but with cocaine we found a signifi-
cant effect of both virus (F(2,69) � 4.092;
p 	 0.05) and day (F(2,69) � 48.88; p 	
0.0001). Control (GFP-alone) mice ex-
hibited a locomotor response to acute

cocaine that was greater than the saline response (post hoc anal-
ysis, day 1 vs day 0; t(16) � 2.123; p 	 0.05; Fig. 8B) and exhibited
locomotor sensitization over time (post hoc analysis, day 1 vs
day 5; t(16) � 2.445; p 	 0.05; Fig. 8B). Animals expressing WT
�FosB in NAc also exhibited a significant acute response to co-
caine (post hoc analysis, day 1 vs day 0; t(18) � 5.097; p 	 0.0001;
Fig. 8B) and exhibited locomotor sensitization over time (post

Figure 3. Phosphorylation of �FosB Thr 149 but not Thr 180 in mouse brain is increased by chronic cocaine. A, MRM analysis peak
for synthetic peptide mimicking phospho-Thr 149. MRM analysis of striatal extracts from saline-treated (B) and cocaine-treated (C)
mice reveals a peak corresponding to the phospho-Thr 149 peptide. D, Quantitation of MRM analysis demonstrating a significant
increase in the phospho-Thr 149 peptide in the cocaine sample compared with the control sample. E, MRM analysis peak for
synthetic peptide mimicking phospho-Thr 180. MRM analysis of striatal extracts from saline-treated (F) and cocaine-treated (G)
mice reveals a peak corresponding to the phospho-Thr 180 peptide. H, Quantitation of MRM analysis demonstrating no significant
difference in the phospho-Thr 180 peptide in the cocaine sample compared with the control sample. (n � 3 measurements per
group; error bars represent SEM; *p 	 0.05 compared with saline phosphopeptide).
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hoc analysis, day 1 vs day 5; t(16) � 2.977; p 	 0.01; Fig. 8B).
However, although animals expressing T149A �FosB in NAc had
an acute response to cocaine (post hoc analysis, day 1 vs day 0; t(13)

� 4.249; p 	 0.001; Fig. 8B), they exhibited no sensitization of
locomotor response with repeated administration (post hoc anal-
ysis, day 1 vs day 5; t(13) � 0.0091; p � 0.99; Fig. 8B). Although
this lack of sensitization in the T149A �FosB animals appears to
be driven by the acute response to cocaine on day 1, post hoc test
reveals no significant difference between GFP alone and T149A
�FosB in day 1 response to cocaine (t(14) � 1.965; p � 0.069).
Thus, the data suggest that �FosB Thr 149 phosphorylation is nec-
essary for the locomotor sensitization to repeated cocaine ob-
served in control animals.

Discussion
Here, we identify novel sites of CaMKII-mediated phosphoryla-
tion of �FosB in vitro; demonstrate that phosphorylation of one
of these sites, Thr 149, is increased in striatum in vivo by chronic
cocaine; and show that this site regulates �FosB-induced tran-
scriptional activity and locomotor activation to cocaine. This
novel mechanism further solidifies the NAc-specific connection
between CaMKII and �FosB in regulating drug responses (Robi-
son et al., 2013, 2014), and suggests that exploration of possible
roles for this molecular pathway in other brain regions and in
regulation of other cellular and behavioral functions is an impor-
tant focus for future studies.

Although a role for NAc CaMKII expression and activity has
been established in several contexts, including behavioral re-
sponses to cocaine (Pierce et al., 1998; Wang et al., 2010; Robison
et al., 2013), amphetamine (Loweth et al., 2008, 2010, 2013), and
antidepressants (Robison et al., 2014), the mechanism of its ac-
tion in NAc has not been completely delineated. CaMKII drives
surface expression of AMPA receptors (Hayashi et al., 2000), a
phenomenon associated in NAc with behavioral sensitization to
cocaine (Boudreau and Wolf, 2005). More recently, a detailed
mechanism for CaMKII regulation of AMPA receptor surface
expression has emerged involving CaMKII phosphorylation of
stargazin (Stg), which modulates the ability of Stg to mediate
recruitment of AMPA receptors to the postsynaptic density
(PSD) by the structural proteins PSD-95 and PSD-93 (Hell,
2014). Because locomotor sensitization is dependent on CaMKII
activity and AMPA receptor function (Pierce et al., 1996, 1998),
and because behavioral responses to AMPA receptor activation in
NAc are enhanced by CaMKII� overexpression (Singer et al.,
2010), it seems likely that the behavioral effects of CaMKII on
cocaine responses are due at least in part to modulation of
AMPA receptor function. Moreover, CaMKII activity in the
NAc is required for reinstatement of cocaine seeking in self-
administration assays, and this process results in increased phos-
phorylation of the AMPA receptor GluA1 at Ser 831 and is blocked
by a viral vector that impairs the transport of GluA1-containing
AMPA receptors to the synaptic membrane (Anderson et al.,

Figure 4. Thr 149 controls�FosB-mediated transcriptional activity. Luciferase reporter assay
(top) in Neuro2A cells demonstrates that Thr 149 phosphomimetic mutation of �FosB increases
transcriptional activation of a 4xAP-1 reporter construct 
7-fold compared with WT �FosB or
�FosB-T180D, both of which induce AP-1 activity �2-fold. Cotransfection of WT CaMKII with
WT �FosB results in a similar increase as �FosB-T149D, while the catalytically dead K42R
CaMKII mutant, caused only a twofold change. Western blot (bottom) shows equal expression
of all �FosB constructs. (n � 3 wells per group; error bars represent SEM; *p 	 0.0001 com-
pared with WT �FosB).

Figure 5. Injection sites for HSV-mediated �FosB mutant overexpression studies. Adult
male mice were stereotactically injected bilaterally in the NAc with HSVs expressing GFP alone
or GFP plus WT �FosB, T149D �FosB, or T149A �FosB. Animals were allowed to recover and
then analyzed 3 d (A), 7 d (B), or 14 d (C) after HSV injection. Symbols mark center mass for each
injection; viral spread was typically 1 mm 3 as observed previously (Robison et al., 2013).
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2008). Since �FosB regulates AMPA receptor subunit expression
in multiple contexts including chronic cocaine exposure (Kelz et
al., 1999; Vialou et al., 2010), we hypothesize that CaMKII medi-
ates complex changes in AMPA receptor function at NAc syn-
apses both by direct modulation of receptor conductance and
incorporation at PSDs and by phosphorylating �FosB to control
receptor expression and subunit composition. However, AMPA
receptor plasticity in NAc following cocaine self-administration
is complicated and differs depending on route of administration,
time of abstinence, and re-exposure (Wolf and Ferrario, 2010;
Pierce and Wolf, 2013), and integrating these changes with the
amount and location of �FosB expression will be a challenge
going forward.

�FosB Ser 27 phosphorylation regulates protein stability
(Ulery-Reynolds et al., 2009), and CaMKII phosphorylates
�FosB at Ser 27 and regulates �FosB stability in the brain (Robi-
son et al., 2013). However, Ser 27 phosphorylation also regulates
�FosB transcriptional activity, as mutation of Ser 27 to Ala re-
duces �FosB-mediated AP-1-luciferase activity (Ulery and Nes-
tler, 2007). In those earlier studies, we found that mutation of

Ser 27 to Asp has no effect on �FosB’s transactivation potential.
Moreover, the Ser 27 effect is specific to �FosB, as the same S27A
mutation in the context of full-length FosB has no significant
effect. Because the transactivation potential of WT �FosB is less
than that of full-length FosB under the same conditions (Ulery
and Nestler, 2007), specific regulation of �FosB’s transactivation
potential by Ser 27 and Thr 149 phosphorylation may add a level of
control required for long-lasting �FosB to function properly, but

Figure 6. Thr 149 phosphorylation does not affect �FosB stability in vivo. A, Immunohisto-
chemistry reveals �FosB expression in the mouse NAc 3, 7, and 14 d after injection of HSV-GFP
or HSV-GFP-WT�FosB, -T149D�FosB, or -T149A�FosB. B, Quantitative image analysis shows
that all constructs express �FosB to a similar extent compared with GFP alone control, and that
there is no difference in the persistence of �FosB expression over time between any of the
constructs (n � 4 – 8 injections per group error bars represent SEM).

Figure 7. �FosB Thr 149 phosphorylation drives cocaine-induced psychomotor activity. A,
Baseline locomotor activity is unaffected by HSV-GFP-WT �FosB, -T149D �FosB, or -T149A
�FosB in mouse NAc. B, Normalized locomotor activity after intraperitoneal injection of saline
or on day 1 or day 5 of five daily cocaine (3.5 mg/kg) injections in mice from A. Cocaine elicited
significant locomotor activity compared with saline only on day 5 in animals expressing WT
�FosB, but on both days 1 and 5 in animals expressing T149D �FosB. (n � 10 animals per
group; error bars represent SEM; *p 	 0.05 compared with saline).

Figure 8. �FosB Thr 149 phosphorylation is required for cocaine-induced psychomotor sen-
sitization. A, Baseline locomotor activity is unaffected by HSV-GFP-WT �FosB or -T149A �FosB
in mouse NAc. B, Normalized locomotor activity after intraperitoneal injection of saline or on
day 1 or day 5 of five daily cocaine (7.5 mg/kg) injections in mice from A. Cocaine elicited
significant locomotor activity compared with saline on day 1 in all animals, but only animals
expressing GFP or WT �FosB showed a sensitized response to cocaine on day 5 compared with
day 1. (n � 7–10 animals per group; error bars represent SEM; *p 	 0.05 compared with
saline).
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not necessary for the proper functioning of full-length FosB,
whose transient expression may provide all of the required tem-
poral specificity. Future studies will determine whether Thr 149

phosphorylation regulates function of full-length FosB.
The location of Thr 149, adjacent to the DNA-binding domain

and very close to the transactivation domain (Fig. 2A; for review,
see Morgan and Curran, 1995), suggests that it might regulate
DNA binding or dimerization, either with Jun proteins or ho-
modimerization (Jorissen et al., 2007), to directly alter affinity for
DNA or the specificity of DNA binding sites. However, because
�FosB is missing much of the transactivation (and degron) do-
mains present in full-length FosB (Carle et al., 2007), the exact
mechanisms of �FosB transactivation are unknown. Thus, it is
also possible that Thr 149 phosphorylation could affect transacti-
vation potential directly, by allosteric alteration of protein–pro-
tein interactions, or indirectly by alteration of secondary or
tertiary protein structure to affect the conformation of other re-
gions of �FosB important for protein–protein interactions. Be-
cause T149D mutation enhances the ability of �FosB to regulate
the locomotor-activating effects of cocaine (Fig. 7), it is clear that
Thr 149 phosphorylation must regulate the extent of �FosB-
mediated transactivation of target genes or the specific subset of
genes targeted in vivo. Understanding the specific genes tran-
scriptionally altered by �FosB Thr 149 phosphorylation, and the
extent of their induction, will require the generation of novel
tools, including transgenic mice with point mutations at Thr 149.
Such an understanding may uncover previously unstudied genes
important for the effects of cocaine, and thus provide novel tar-
gets for therapeutic intervention in addiction.
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