9 research outputs found

    Antileishmanial effect of silver nanoparticles and their enhanced antiparasitic activity under ultraviolet light

    Get PDF
    Leishmaniasis is a protozoan vector-borne disease and is one of the biggest health problems of the world. Antileishmanial drugs have disadvantages such as toxicity and the recent development of resistance. One of the best-known mechanisms of the antibacterial effects of silver nanoparticles (Ag-NPs) is the production of reactive oxygen species to which Leishmania parasites are very sensitive. So far no information about the effects of Ag-NPs on Leishmania tropica parasites, the causative agent of leishmaniasis, exists in the literature. The aim of this study was to investigate the effects of Ag-NPs on biological parameters of L. tropica such as morphology, metabolic activity, proliferation, infectivity, and survival in host cells, in vitro. Consequently, parasite morphology and infectivity were impaired in comparison with the control. Also, enhanced effects of Ag-NPs were demonstrated on the morphology and infectivity of parasites under ultraviolet (UV) light. Ag-NPs demonstrated significant antileishmanial effects by inhibiting the proliferation and metabolic activity of promastigotes by 1.5- to threefold, respectively, in the dark, and 2- to 6.5-fold, respectively, under UV light. Of note, Ag-NPs inhibited the survival of amastigotes in host cells, and this effect was more significant in the presence of UV light. Thus, for the first time the antileishmanial effects of Ag-NPs on L. tropica parasites were demonstrated along with the enhanced antimicrobial activity of Ag-NPs under UV light. Determination of the antileishmanial effects of Ag-NPs is very important for the further development of new compounds containing nanoparticles in leishmaniasis treatment

    Utility of the microculture method for Leishmania detection in non-invasive samples obtained from a blood bank

    No full text
    In recent years, the role of donor blood has taken an important place in epidemiology of Leishmaniasis. According to the WHO, the numbers of patients considered as symptomatic are only 5-20% of individuals with asymptomatic leishmaniasis. In this study for detection of Leishmania infection in donor blood samples, 343 samples from the Capa Red Crescent Blood Center were obtained and primarily analyzed by microscopic and serological methods. Subsequently, the traditional culture (NNN), Immunochromatographic test (ICT) and Polymerase Chain Reaction (PCR) methods were applied to 21 samples which of them were found positive with at least one method. Buffy coat (BC) samples from 343 blood donors were analyzed: 15 (4.3%) were positive by a microculture method (MCM); and 4 (1.1%) by smear. The sera of these 343 samples included 9 (2.6%) determined positive by ELISA and 7 (2%) positive by IFAT. Thus, 21 of (6.1%) the 343 subjects studied by smear, MCM, IFAT and ELISA techniques were identified as positive for leishmaniasis at least one of the techniques and the sensitivity assessed. According to our data, the sensitivity of the methods are identified as MCM (71%), smear (19%), IFAT (33%), ELISA (42%), NNN (4%), PCR (14%) and IC T (4%). Thus, with this study for the first time, the sensitivity of a MCM was examined in blood donors by comparing MCM with the methods used in the diagnosis of leishmaniasis. As a result, MCM was found the most sensitive method for detection of Leishmania parasites in samples obtained from a blood bank. In addition, the presence of Leishmania parasites was detected in donor bloods in Istanbul, a non-endemic region of Turkey, and these results is a vital importance for the health of blood recipients. (C) 2013 Elsevier B.V. All rights reserved
    corecore