20 research outputs found

    An Efficient Multi-Beam Array Architecture for L-Band Secondary Surveillance Radars

    Get PDF
    In this paper, the design and fabrication of a large array antenna with three required, Sum, Difference and Control beams for a monopulse Secondary Surveillance Radar (SSR) is presented. A special array element, which is a high gain dual dipole structure, is designed and tested. This element has 9.6 dB gain in 1060 MHz and does not need any balun. The main challenge of extracting three beams out of one beam feeding networks (BFN) has been resolved efficiently by maximum integration of all three in one network, reducing the number of required modules to one half. The complete 33-element array, working in 1030 MHz and 1090 MHz is designed based on the Taylor array factor. The complex feed network of this 6-meter long array has successfully been synthesized as modular as possible. Sum pattern was designed for 2.7o azimuth beam width and -20 dB side lobe level and Diff pattern with a deep null in the boresight of the Sum pattern. The Ctrl beam was also designed in order to cover the Sum beam except in the direction of the main lobe

    An Efficient Reliability-Based Approach for Evaluating Safe Scaled Distance of Steel Columns under Dynamic Blast Loads

    Get PDF
    Damage to building load-bearing members (especially columns) under explosions and impact are critical issues for structures, given that they may cause a progressive collapse and remarkably increase the number of potential victims. One of the best ways to deal with this issue is to provide values of safe protective distance (SPD) for the structural members to verify, so that the amount of damage (probability of exceedance low damage) cannot exceed a specified target. Such an approach takes the form of the so-called safe scaled distance (SSD), which can be calculated for general structural members but requires dedicated and expensive studies. This paper presents an improved calculation method, based on structural reliability analysis, to evaluate the minimum SSD for steel columns under dynamic blast loads. An explicit finite element (FE) approach is used with the Monte Carlo simulation (MCS) method to obtain the SSD, as a result of damage probability. The uncertainties associated with blast and material properties are considered using statistical distributions. A parametric study is thus carried out to obtain curves of probability of low damage for a range of H-shaped steel columns with different size and boundaries. Finally, SSD values are detected and used as an extensive databank to propose a practical empirical formulation for evaluating the SSD of blast loaded steel columns with good level of accuracy and high calculation efficiency

    Damage Detection in Beam and Rod using Wave Propagation Method with Spectral Finite Elements

    No full text
    In this paper, wave propagation method was applied to detect damage of structures. Spectral Finite Element Method (SFEM) was used to analyze wave propagation in structures. Two types of structures i.e. rod and Euler-Bernoulli beam were modelled using spectral elements. The advantage of spectral finite element over conventional Finite Element Method (FEM), in wave propagation problems, is its accuracy and lower computational time. Two examples of rod and Euler-Bernoulli beam with embeded concentrated mass were presented to illustrate the superiority of SFEM to FEM. Finally, a cracked beam was modeled and analyzed using spectral finite elements and the location of the crack was determined using time history response of beam structure

    An optimization technique on ultrasonic and cutting parameters for drilling and deep drilling of nickel-based high-strength Inconel 738LC superalloy with deeper and higher hole quality

    No full text
    In this research work, an ultrasonic assisted drilling system is employed to apply both rotation and vibration to drill bits. The transducer horn transfers power very efficiently and changes tools effortlessly. The setup used to conduct drilling tests is Inconel 738LC with depth-to-diameter ratios from 2 to 10 by conventional drilling (CD), ultrasonic assisted drilling (UAD), and electro discharge drilling (EDD). The effects of ultrasonic vibration amplitude, spindle speed, and number of steps to drill each hole on machining force and surface roughness in UAD are investigated. The results demonstrate not only a significant improvement in tool life (by applying ultrasonic vibration to the drilling process) but also a 40 % reduction in thrust force compared to CD. The UAD technique seems more appropriate than the EDD method due to the ability to reduce machining process time by up to 90 %, improve cylindricity by roughly 50 %, increase hole dimension accuracy by up to 80 %, and reduce surface roughness by 52 %.The authors would like to acknowledge Hanyang University for providing the necessary facilities and resources for this research. This research was funded by the Hanyang University?s research fund with number 201500000000438
    corecore