291 research outputs found
Effect of Jitter on the Settling Time of Mesochronous Clock Retiming Circuits
It is well known that timing jitter can degrade the bit error rate (BER) of
receivers that recover the clock from input data. However, timing jitter can
also result in an indefinite increase in the settling time of clock recovery
circuits, particularly in low swing mesochronous systems. Mesochronous clock
retiming circuits are required in repeaterless low swing on-chip interconnects.
We first discuss how timing jitter can result in a large increase in the
settling time of the clock recovery circuit. Next, the circuit is modelled as a
Markov chain with absorbing states. The mean time to absorption of the Markov
chain, which represents the mean settling time of the circuit, is determined.
The model is validated through behavioural simulations of the circuit, the
results of which match well with the model predictions. We consider circuits
with (i) data dependent jitter, (ii) random jitter, and (iii) combination of
both of them. We show that a mismatch between the strengths of up and down
corrections of the retiming can reduce the settling time. In particular, a 10%
mismatch can reduce the mean settling time by up to 40%. We leverage this fact
toward improving the settling time performance, and propose useful techniques
based on biased training sequences and mismatched charge pumps. We also present
a coarse+fine clock retiming circuit, which can operate in coarse first mode,
to reduce the settling time substantially. These fast settling retiming
circuits are verified with circuit simulations.Comment: 23 pages, 40 figure
Freeze-Thaw Performance and Moisture-Induced Damage Resistance of Base Course Stabilized with Slow Setting Bitumen Emulsion-Portland Cement Additives
Freeze-thaw (FT) cycles and moisture susceptibility are important factors influencing the geotechnical characteristics of soil-aggregates. Given the lack of published information on the behavior of cement-bitumen emulsion-treated base (CBETB) under environmental conditions, especially freezing and thawing, this study investigated the effects of these additives on the CBETB performance. The primary goal was to evaluate the resistance of CBETB to moisture damage by performing FT, Marshall conditioning, and AASHTO T-283 tests and to evaluate the long-term stripping susceptibility of CBETB while also predicting the liquid antistripping additives to assess the mixture’s durability and workability. Specimens were stabilized with Portland cement (0%–6%), bitumen emulsion (0%–5%), and Portland cement-bitumen emulsion mixtures and cured for 7 days, and their short- and long-term performances were studied. Evaluation results of both the Marshall stability ratio and the tensile strength ratio show that the additions of additives increase the resistance of the mixtures to moisture damage. Results of durability tests performed for determining the resistance of compacted specimens to repeated FT cycles indicate that the specimen with the 4% cement-3% bitumen emulsion mixture significantly improves water absorption, volume changes, and weight losses. This indicates the effectiveness of this additive as a road base stabilizer with excellent engineering properties for cold regions
Fabrication and Characterization of New Ti-TiO2-Al and Ti-TiO2--Pt Tunnel Diodes
Remotely empowered wireless sensor networks use different energy resources including photovoltaic solar cells, wireless power transmission, and batteries. As another option the electromagnetic energy available in the ambient can be harvested to power these remote sensors. This is particularly valuable if it is desirable to harvest the ambient energy available in the wide range of electromagnetic spectrum. This has motivated the research for developing energy harvesting devices which can absorb this energy and produce a DC voltage. Rectenna, an antenna coupled with a rectifier, is the main component used for absorbing electromagnetic radiation at GHz and THz frequencies. Rectifying MIM tunnel diodes are able to operate at tens and hundreds of GHz frequency. As the preliminary steps towards development of high-frequency rectifiers, this paper presents fabrication and DC characterization of two new MIM diodes, Ti-TiO2-Al and Ti-TiO2-Pt. G-V analysis of the fabricated diodes verifies tunneling. Brinkman-Dynes-Rowell model is used to extract oxide thickness of which the derived value is around 9 nm. Ti-TiO2-Pt diode exhibits rectification ratio of 15 at 0.495 V, which is more than rectification ratio reported in earlier works
- …