398 research outputs found

    Metal nanoring and tube formation on carbon nanotubes

    Get PDF
    The structural and electronic properties of aluminum covered single wall carbon nanotubes (SWNT) are studied from first-principles for a large number of coverage. Aluminum-aluminum interaction that is stronger than aluminum-tube interaction, prevents uniform metal coverage, and hence gives rise to the clustering. However, a stable aluminum ring and aluminum nanotube with well defined patterns can also form around the semiconducting SWNT and lead to metallization. The persistent current in the Al nanoring is discussed to show that a high magnetic field can be induced at the center of SWNT.Comment: Submitted to Physical Review

    How Do You Like Me in This: User Embodiment Preferences for Companion Agents

    Get PDF
    We investigate the relationship between the embodiment of an artificial companion and user perception and interaction with it. In a Wizard of Oz study, 42 users interacted with one of two embodiments: a physical robot or a virtual agent on a screen through a role-play of secretarial tasks in an office, with the companion providing essential assistance. Findings showed that participants in both condition groups when given the choice would prefer to interact with the robot companion, mainly for its greater physical or social presence. Subjects also found the robot less annoying and talked to it more naturally. However, this preference for the robotic embodiment is not reflected in the users’ actual rating of the companion or their interaction with it. We reflect on this contradiction and conclude that in a task-based context a user focuses much more on a companion’s behaviour than its embodiment. This underlines the feasibility of our efforts in creating companions that migrate between embodiments while maintaining a consistent identity from the user’s point of view

    Optoelectronic cooling of mechanical modes in a semiconductor nanomembrane

    Full text link
    Optical cavity cooling of mechanical resonators has recently become a research frontier. The cooling has been realized with a metal-coated silicon microlever via photo-thermal force and subsequently with dielectric objects via radiation pressure. Here we report cavity cooling with a crystalline semiconductor membrane via a new mechanism, in which the cooling force arises from the interaction between the photo-induced electron-hole pairs and the mechanical modes through the deformation potential coupling. The optoelectronic mechanism is so efficient as to cool a mode down to 4 K from room temperature with just 50 uW of light and a cavity with a finesse of 10 consisting of a standard mirror and the sub-wavelength-thick semiconductor membrane itself. The laser-cooled narrow-band phonon bath realized with semiconductor mechanical resonators may open up a new avenue for photonics and spintronics devices.Comment: 5 pages, 4 figure

    Reply to the Comment by B. Andresen

    Full text link
    All the comments made by Andresen's comments are replied and are shown not to be pertinent. The original discussions [ABE S., Europhys. Lett. 90 (2010) 50004] about the absence of nonextensive statistical mechanics with q-entropies for classical continuous systems are reinforced.Comment: 5 pages. This is Reply to B. Andresen's Comment on the paper entitled "Essential discreteness in generalized thermostatistics with non-logarithmic entropy", Europhys. Lett. 90 (2010) 5000

    Systematic study of adsorption of single atoms on a carbon nanotube

    Get PDF
    We studied the adsorption of single atoms on a semiconducting and metallic single-wall carbon nanotube from first principles for a large number of foreign atoms. The stable adsorption sites, binding energy, and the resulting electronic properties are analyzed. The character of the bonding and associated physical properties exhibit dramatic variations depending on the type of the adsorbed atom. While the atoms of good conducting metals, such as Cu and Au, form very weak bonding, atoms such as Ti, Sc, Nb, and Ta are adsorbed with relatively high binding energy. Most of the adsorbed transition-metal atoms excluding Ni, Pd, and Pt have a magnetic ground state with a significant magnetic moment. Our results suggest that carbon nanotubes can be functionalized in different ways by their coverage with different atoms, showing interesting applications such as one-dimensional nanomagnets or nanoconductors and conducting connects, etc

    Electronic localization at mesoscopic length scales: different definitions of localization and contact effects in a heuristic DNA model

    Full text link
    In this work we investigate the electronic transport along model DNA molecules using an effective tight-binding approach that includes the backbone on site energies. The localization length and participation number are examined as a function of system size, energy dependence, and the contact coupling between the leads and the DNA molecule. On one hand, the transition from an diffusive regime to a localized regime for short systems is identified, suggesting the necessity of a further length scale revealing the system borders sensibility. On the other hand, we show that the lenght localization and participation number, do not depended of system size and contact coupling in the thermodynamic limit. Finally we discuss possible length dependent origins for the large discrepancies among experimental results for the electronic transport in DNA sample

    Combined In Silico, In Vivo, and In Vitro Studies Shed Insights into the Acute Inflammatory Response in Middle-Aged Mice

    Get PDF
    We combined in silico, in vivo, and in vitro studies to gain insights into age-dependent changes in acute inflammation in response to bacterial endotoxin (LPS). Time-course cytokine, chemokine, and NO2-/NO3- data from "middle-aged" (6-8 months old) C57BL/6 mice were used to re-parameterize a mechanistic mathematical model of acute inflammation originally calibrated for "young" (2-3 months old) mice. These studies suggested that macrophages from middle-aged mice are more susceptible to cell death, as well as producing higher levels of pro-inflammatory cytokines, vs. macrophages from young mice. In support of the in silico-derived hypotheses, resident peritoneal cells from endotoxemic middle-aged mice exhibited reduced viability and produced elevated levels of TNF-α, IL-6, IL-10, and KC/CXCL1 as compared to cells from young mice. Our studies demonstrate the utility of a combined in silico, in vivo, and in vitro approach to the study of acute inflammation in shock states, and suggest hypotheses with regard to the changes in the cytokine milieu that accompany aging. © 2013 Namas et al

    Divergent in situ expression of IL-31 and IL-31RA between bullous pemphigoid and pemphigus vulgaris

    Get PDF
    Bullous pemphigoid (BP) and pemphigus vulgaris (PV) are two major autoimmune blistering skin diseases. Unlike PV, BP is accompanied by intense pruritus, suggesting possible involvement of the pruritogenic cytokine IL-31. However, the underlying mechanisms of the clinical difference between BP and PV in terms of pruritus are not fully understood. To compare the expression levels of IL-31 and its receptor IL-31RA in the lesional skin, including peripheral nerves in BP and PV patients, immunohistochemical staining for IL-31 and IL-31RA was performed in skin samples of BP and PV patients and healthy controls (HC). The IL-31RA-expressing area in epidermis and peripheral nerves was analysed using ImageJ and the percentage of positive cells for IL-31/IL-31RA in dermal infiltrating cells was manually quantified. Quantitative analyses revealed that IL-31/IL-31RA expressions in the epidermis and dermal infiltrate were significantly increased in BP compared to PV and HC. The difference between BP and PV became more obvious when advanced bullous lesions were compared. Peripheral nerves in BP lesions presented significantly higher IL-31RA expression compared to PV lesions. In conclusion, we found significantly augmented expressions of IL-31/IL-31RA in BP lesions, including peripheral nerves, in comparison to PV. These results suggest a possible contribution of IL-31/IL-31RA signalling to the difference between BP and PV in the facilitation of pruritus and local skin inflammation, raising the possibility of therapeutic targeting of the IL-31/IL-31RA pathway in BP patients

    The week after:Do the effects of imagined contact last over time?

    Get PDF
    The vast majority of studies assessing the prejudice reduction properties of imagined contact have focused so far on the immediate effects of the intervention. In an attempt to contribute to the literature examining the long-term effects of imagined contact, the two studies reported in this paper tested the immediate and long-term effects of imagined contact on outgroup attitudes, intergroup anxiety, and behavioral intentions in Experiment 1, and also on contact self-efficacy in Experiment 2. Both studies were conducted in a context of entrenched intergroup conflict, Cyprus. The results supported the effectiveness of imagined contact in eliciting more positive attitudes, lower levels of anxiety, more positive behavioral intentions, and higher contact self-efficacy when these were measured immediately after contact. However, evidence for the endurance of these effects was systematically found only for outgroup attitudes and intergroup anxiety. While these results speak to the ability of imagined contact to lead to long-term changes in important and commonly studied intergroup outcomes, lack of consistent evidence regarding its ability to yield lasting changes on variables pertaining to intended behavior toward the outgroup compose a challenge for the intervention
    corecore