1,704 research outputs found

    Diffusion of small light particles in a solvent of large massive molecules

    Get PDF
    We study diffusion of small light particles in a solvent which consists of large heavy particles. The intermolecular interactions are chosen to approximately mimic a water-sucrose (or water-polysaccharide) mixture. Both computer simulation and mode coupling theoretical (MCT) calculations have been performed for a solvent-to-solute size ratio five and for a large variation of the mass ratio, keeping the mass of the solute fixed. Even in the limit of large mass ratio the solute motion is found to remain surprisingly coupled to the solvent dynamics. Interestingly, at intermediate values of the mass ratio, the self-intermediate scattering function of the solute, F_{s}(k,t) (where k is the wavenumber and t the time), develops a stretching at long time which could be fitted to a stretched exponential function with a k-dependent exponent, \beta. For very large mass ratio, we find the existence of two stretched exponentials separated by a power law type plateau. The analysis of the trajectory shows the coexistence of both hopping and continuous motions for both the solute and the solvent particles. It is found that for mass ratio five, the MCT calculations of the self-diffusion underestimates the simulated value by about 20 %, which appears to be reasonable because the conventional form of MCT does not include the hopping mode. However, for larger mass ratio, MCT appears to breakdown more severely. The breakdown of the MCT for large mass ratio can be connected to a similar breakdown near the glass transition.Comment: RevTex4, 9 pages, 10 figure

    Orientational relaxation in a dispersive dynamic medium : Generalization of the Kubo-Ivanov-Anderson jump diffusion model to include fractional environmental dynamics

    Get PDF
    Ivanov-Anderson (IA) model (and an earlier treatment by Kubo) envisages a decay of the orientational correlation by random but large amplitude molecular jumps, as opposed to infinitesimal small jumps assumed in Brownian diffusion. Recent computer simulation studies on water and supercooled liquids have shown that large amplitude motions may indeed be more of a rule than exception. Existing theoretical studies on jump diffusion mostly assume an exponential (Poissonian) waiting time distribution for jumps, thereby again leading to an exponential decay. Here we extend the existing formalism of Ivanov and Anderson to include an algebraic waiting time distribution between two jumps. As a result, the first and second rank orientational time correlation functions show the same long time power law, but their short time decay behavior is quite different. The predicted Cole-Cole plot of dielectric relaxation reproduces various features of non-Debye behaviour observed experimentally. We also developed a theory where both unrestricted small jumps and large angular jumps coexist simultaneously. The small jumps are shown to have a large effect on the long time decay, particularly in mitigating the effects of algebraic waiting time distribution, and in giving rise to an exponential-like decay, with a time constant, surprisingly, less than the time constant that arises from small amplitude decay alone.Comment: 14 figure

    The Adaptation and Variability of Response of the Human Brain

    Get PDF
    Electrical potentials have been recorded from the brain of five normal human subjects by means of needle electrodes inserted about half a centimeter through the scalp, one near the external occipital protuberance and another about three inches forward and an inch to the side from the median line. The high time-constant of the amplifier, which was about a second, made it possible to obtain an almost distortionless recording of the low frequency waves. The amplifier was connected to the oscillograph element. The oscillation of the light beam projected from the element was photographed on sensitized paper

    Orientational relaxation in a discotic liquid crystal

    Get PDF
    We investigate orientational relaxation of a model discotic liquid crystal, consists of disc-like molecules, by molecular dynamics simulations along two isobars starting from the high temperature isotropic phase. The two isobars have been so chosen that (A) the phase sequence isotropic (I)-nematic (N)-columnar (C) appears upon cooling along one of them and (B) the sequence isotropic (I)-columnar (C) along the other. While the orientational relaxation in the isotropic phase near the I-N phase transition in system (A) shows a power law decay at short to intermediate times, such power law relaxation is not observed in the isotropic phase near the I-C phase boundary in system (B). In order to understand this difference (the existence or the absence of the power law decay), we calculated the the growth of the orientational pair distribution functions (OPDF) near the I-N phase boundary and also near the I-C phase boundary. We find that OPDF shows a marked growth in long range correlation as the I-N phase boundary is approached in the I-N-C system (A), but such a growth is absent in the I-C system, which appears to be consistent with the result that I-N phase transition in the former is weakly first order while the the I-C phase transition in the later is not weak. As the system settles into the nematic phase, the decay of the single-particle second-rank orientational OTCF follows a pattern that is similar to what is observed with calamitic liquid crystals and supercooled molecular liquids.Comment: 16 pages and 4 figure

    Truncated Harmonic Osillator and Parasupersymmetric Quantum Mechanics

    Get PDF
    We discuss in detail the parasupersymmetric quantum mechanics of arbitrary order where the parasupersymmetry is between the normal bosons and those corresponding to the truncated harmonic oscillator. We show that even though the parasusy algebra is different from that of the usual parasusy quantum mechanics, still the consequences of the two are identical. We further show that the parasupersymmetric quantum mechanics of arbitrary order p can also be rewritten in terms of p supercharges (i.e. all of which obey Qi2=0Q_i^{2} = 0). However, the Hamiltonian cannot be expressed in a simple form in terms of the p supercharges except in a special case. A model of conformal parasupersymmetry is also discussed and it is shown that in this case, the p supercharges, the p conformal supercharges along with Hamiltonian H, conformal generator K and dilatation generator D form a closed algebra.Comment: 9 page

    Isospectral Potentials from Modified Factorization

    Full text link
    Factorization of quantum mechanical potentials has a long history extending back to the earliest days of the subject. In the present paper, the non-uniqueness of the factorization is exploited to derive new isospectral non-singular potentials. Many one-parameter families of potentials can be generated from known potentials using a factorization that involves superpotentials defined in terms of excited states of a potential. For these cases an operator representation is available. If ladder operators are known for the original potential, then a straightforward procedure exists for defining such operators for its isospectral partners. The generality of the method is illustrated with a number of examples which may have many possible applications in atomic and molecular physics.Comment: 8 pages, 4 figure

    Competing PT potentials and re-entrant PT symmetric phase for a particle in a box

    Full text link
    We investigate the effects of competition between two complex, PT\mathcal{PT}-symmetric potentials on the PT\mathcal{PT}-symmetric phase of a "particle in a box". These potentials, given by VZ(x)=iZsign(x)V_Z(x)=iZ\mathrm{sign}(x) and Vξ(x)=iξ[δ(xa)δ(x+a)]V_\xi(x)=i\xi[\delta(x-a)-\delta(x+a)], represent long-range and localized gain/loss regions respectively. We obtain the PT\mathcal{PT}-symmetric phase in the (Z,ξ)(Z,\xi) plane, and find that for locations ±a\pm a near the edge of the box, the PT\mathcal{PT}-symmetric phase is strengthened by additional losses to the loss region. We also predict that a broken PT\mathcal{PT}-symmetry will be restored by increasing the strength ξ\xi of the localized potential. By comparing the results for this problem and its lattice counterpart, we show that a robust PT\mathcal{PT}-symmetric phase in the continuum is consistent with the fragile phase on the lattice. Our results demonstrate that systems with multiple, PT\mathcal{PT}-symmetric potentials show unique, unexpected properties.Comment: 7 pages, 3 figure

    High-Dimensional Topological Insulators with Quaternionic Analytic Landau Levels

    Full text link
    We study the 3D topological insulators in the continuum by coupling spin-1/2 fermions to the Aharonov-Casher SU(2) gauge field. They exhibit flat Landau levels in which orbital angular momentum and spin are coupled with a fixed helicity. The 3D lowest Landau level wavefunctions exhibit the quaternionic analyticity as a generalization of the complex analyticity of the 2D case. Each Landau level contributes one branch of gapless helical Dirac modes to the surface spectra, whose topological properties belong to the Z2-class. The flat Landau levels can be generalized to an arbitrary dimension. Interaction effects and experimental realizations are also studied

    Pseudo-Hermiticity and some consequences of a generalized quantum condition

    Full text link
    We exploit the hidden symmetry structure of a recently proposed non-Hermitian Hamiltonian and of its Hermitian equivalent one. This sheds new light on the pseudo-Hermitian character of the former and allows access to a generalized quantum condition. Special cases lead to hyperbolic and Morse-like potentials in the framework of a coordinate-dependent mass model.Comment: 10 pages, no figur

    The Stability and Adaption of the Human Brain Rhythm

    Get PDF
    The purpose of this study was to investigate to what degree experimental situations involving repeated or continuous performance of tasks affected the potential rhythm of the brain
    corecore