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Abstract

We investigate orientational relaxation of a model discotic liquid crystal, consists of disc-like

molecules, by molecular dynamics simulations along two isobars starting from the high temperature

isotropic phase. The two isobars have been so chosen that (A) the phase sequence isotropic (I)-

nematic (N)-columnar (C) appears upon cooling along one of them and (B) the sequence isotropic

(I)-columnar (C) along the other. While the orientational relaxation in the isotropic phase near

the I-N phase transition in system (A) shows a power law decay at short to intermediate times,

such power law relaxation is not observed in the isotropic phase near the I-C phase boundary

in system (B). In order to understand this difference (the existence or the absence of the power

law decay), we calculated the the growth of the orientational pair distribution functions (OPDF)

near the I-N phase boundary and also near the I-C phase boundary. We find that OPDF shows

a marked growth in long range correlation as the I-N phase boundary is approached in the I-N-C

system (A), but such a growth is absent in the I-C system, which appears to be consistent with

the result that I-N phase transition in the former is weakly first order while the the I-C phase

transition in the later is not weak. As the system settles into the nematic phase, the decay of the

single-particle second-rank orientational OTCF follows a pattern that is similar to what is observed

with calamitic liquid crystals and supercooled molecular liquids.

† For correspondence: bbagchi@sscu.iisc.ernet.in
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I. INTRODUCTION

The anisotropy in molecular shape plays a crucial role in the rich phase behavior that

thermotropic liquid crystals exhibit [1, 2]. Calamitic liquid crystals, that comprise rodlike

molecules, are long known and their phase behavior and dynamics have been extensively

investigated over decades [1, 2]. The discovery of discotic liquid crystals, that consist of

disclike molecules, is, however, more recent and dates back only to the late 1970s [3]. Due

to its unique structural, elctrical and optical properties, discotic liquid crystals have drawn

considerable amount of interests in recent past [4, 5, 6]. Upon cooling from the high tem-

perature isotropic (I) phase, discotic liquid crystals typically exhibit a nematic (N) phase

and/or a columnar (C) phase [7]. The discotic nematic phase is analogous to the nematic

phase formed by rodlike molecules in that there is a long-range orientational order with-

out the involvement of any long-range translational order. In the columnar phase that is

typical of discotic liquid crystals, the molecules are stacked on top of each other giving rise

to a columnar structure. These columns form a long-range two dimensional order in the

orthogonal plane with either a hexagonal or a rectangular symmetry. While the sequence

of phases I-N-C has been observed experimentally with a number of discotic liquid crystals

upon cooling, there have been only a few cases where I-C transition is observed [8]. Al-

though these are highly interesting systems to study and computer simulation studies of

model liquid crystals have undergone an upsurge in recent times [9, 10], we are aware of

only very few studies of orientational relaxation on discotic liquid crystals [11] compared to

that on rod-like molecules.

Discotic molecules typically contain an aromatic core with flexible chains added in the

equatorial plane [11]. While atomistic models could in principle be undertaken, molecular

models, where mesogens are approximated as particles with well-defined anisotropic shape,

find their utility in obtaining a rather generalized view. A simple approach along this line

involves consideration of purely repulsive models involving hard bodies [12]. This rather

extreme choice is inspired by the idea that the equilibrium structure of a dense liquid is

essentially determined by the repulsive forces which fix the molecular shape [13]. Along

this line, thin hard platelets [14], hard oblate ellipsoids of revolution [15, 16], and cut hard

spheres [17] have been investigated. Such an approach is appealing for its simplicity [12].

However, temperature plays no direct role in purely repulsive models on the contrary to what
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is desired for thermotropic liquid crystals [12]. In this respect, the Gay-Berne pair potential

[18], which is essentially a generalization of the Lennard-Jones potential to incorporate

anisotropic interactions, or one of its variants [18], where mesogens are approximated with

soft ellipsoids of revolution, appears to serve as a more realistic model. In fact, discotic

liquid crystals, modeled by the Gay-Berne family of potentials, have been found to capture

the key features of the experimentally observed phase behavior [19, 20, 21]. In a density

functional theoretical approach with a form of the Gay-Berne potential modified for discotic

liquid crystals, the isotropic-nematic-columnar phase behavior has recently been studied for

various aspect ratios [22].

Dynamics of discotic liquid crystals have drawn attention as well [16, 23, 24, 25, 26, 27,

28, 29, 30]. The focus has often been on the dynamics of the columnar phase [24, 26, 28,

29, 30]. In this work, we have undertaken molecular dynamics simulations of a system of

oblate ellipsoids of revolution interacting with a modified Gay-Berne pair potential to study

temperature dependent orientational relaxation along two isobars. We have chosen two

isobars such that the phase sequence I-N-C appears upon cooling along the one at a higher

pressure and the sequence I-C along the other. We have investigated temperature dependent

orientational relaxation across the isotropic-nematic transition and in the isotropic phase

near the I-C phase boundary with a focus on the short-to-intermediate time decay behavior.

This work follows up our recent work [31], which has reported the emergence of power law

decay regime(s) in orientational relaxation across the isotropic-nematic transition. In the

spirit of the universal power law in orientational relaxation in thermotropic liquid crystals

suggested therein [31], we compare the orientational dynamics we observed here with those

of calamitic liquid crystals obtained from recent optical Kerr effect measurements [32, 33,

34, 35] and molecular dynamics simulations studies [31, 36, 37]. We further discuss the

analogous dynamics observed in supercooled molecular liquids.

The rest of the paper is organized as follows. Section II describes the model we have

studied here along with some simulation details. In section III, we present the results with

discussion. Section IV presents a theoretical analysis of the origin of the power law decay.

Section V discusses about orientational pair distribution function before we conclude in

section VI with a summary of the results and a few comments.
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II. MODEL AND DETAILS OF THE SIMULATION

The Gay-Berne (GB) pair potential, where each ellipsoid of revolution has a single-site

representation, is an elegant generalization of the extensively used isotropic Lennard-Jones

potential to incorporate anisotropy in both the attractive and the repulsive parts of the

interaction [18]. In the GB pair potential, ith ellipsoid of revolution is represented by the

position ri of its center of mass and a unit vector ei along the short axis in the case of

an oblate. In this work, we have employed the form of the GB potential that has been

modified by Bates and Luckhurst for discotic liquid crystals [20]. In this modified form, the

interaction between two oblate ellipsoids of revolution i and j is given by

UGB
ij (rij, ei, ej) = 4ǫ(r̂ij , ei, ej)(ρ

−12

ij − ρ−6

ij ) (1)

where

ρij =
rij − σ(r̂ij , ei, ej) + σff

σff

. (2)

Here σff defines the thickness or equivalently, the separation between the two in a face-

to-face configuration, rij is the distance between the centers of mass of the ellipsoids of

revolution i and j, and r̂ij = rij/rij is a unit vector along the intermolecular separation

vector rij . The molecular shape parameter σ and the energy parameter ǫ both depend on

the unit vectors ei and ej as well as on r̂ij as given by the following set of equations:

σ(r̂ij, ei, ej) = σ0

[

1 −
χ

2

{

(ei · r̂ij + ej · r̂ij)
2

1 + χ(ei · ej)
+

(ei · r̂ij − ej · r̂ij)
2

1 − χ(ei · ej)

}]−1/2

(3)

with χ = (κ2 − 1)/(κ2 + 1) and

ǫ(r̂ij , ei, ej) = ǫ0[ǫ1(ei, ej)]
ν [ǫ2(r̂ij, ei, ej)]

µ (4)

where the exponents µ and ν are adjustable, and

ǫ1(ei, ej) = [1 − χ2(ei · ej)
2]−1/2 (5)

and

ǫ2(r̂ij, ei, ej) = 1 −
χ′

2

[

(ei · r̂ij + ej · r̂ij)
2

1 + χ′(ei · ej)
+

(ei · r̂ij − ej · r̂ij)
2

1 − χ′(ei · ej)

]

(6)

with χ′ = (κ′ 1/µ − 1)/(κ′ 1/µ + 1). Here κ = σff/σee is the aspect ratio of the ellipsoid

of revolution with σee denoting the separation between two ellipsoids of revolution in a
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edge-to-edge configuration, and σee = σ0, and κ′ = ǫee/ǫff , where ǫee is the depth of the

minimum of the potential for a pair of ellipsoids of revolution aligned parallel in a edge-

to-edge configuration, and ǫff is the corresponding depth for the face-to-face alignment.

Here ǫ0 denotes depth of the minimum of the pair potential for cross allignment. The

parameterization, that we have employed here, is (κ = 0.345, κ′ = 0.2, µ = 1, ν = 2) [20].

Molecular dynamics simulations have been performed with the model discotic system

containing 500 oblate ellipsoids of revolution in a cubic box with periodic boundary condi-

tions. All the quantities reported here are given in reduced units, defined in terms of the

Gay-Berne potential parameters ǫ0 and σ0, each of which has been taken to be unity: length

in units of σ0, temperature in units of ǫ0/kB, kB being the Boltzmann constant, and time

in units of (σ2

0
m/ǫ0)

1/2, m being the mass of the ellipsoids of revolution. We have set the

mass as well as the moment of inertia of each of the ellipsoids of revolution equal to unity.

The intermolecular potential has been truncated at a distance rcut = 1.6 as in Ref. [20] and

shifted. The equations of motion have been integrated following the velocity-Verlet algo-

rithm with the integration time steps of δt = 0.0015 in the reduced units [38]. Equilibration

has been done in an NPT ensemble for a time period of tq. Following this, the system has

been allowed to propagate with a constant energy and density for a time period of te(≥ tq)

in order to ensure equilibration. Upon observation of no drift in temperature, pressure, and

potential energy, the data collection has been executed in a microcanonical ensemble. The

model discotic system has been melted from an initial fcc configuration at high temperatures

and low densities, and studied along two isobars at pressures P = 25 and P = 10 at several

temperatures.

III. RESULTS AND DISCUSSION

We first need to characterize the phases that appear along the isobars studied here. To

this end, we have monitored the average second-rank orientational order parameter < P2 >

and the radial distribution function (data not shown here). In Fig. 1, we show the evolution

of < P2 > with temperature along the two isobars. The second-rank orientational order

parameter has been computed as the largest eigenvalue of the order parameter tensor

Sαβ =
1

N

N
∑

i=1

1

2
(3eiαeiβ − δαβ), (7)
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FIG. 1: The average second-rank orientational order parameter < P2 > as a function of temperature

along two isobars. The open circles (red) correspond to the data for the pressure P = 25 and the

squares (blue) for P = 10. The phase boundaries are shown by vertical dotted lines for P = 25

(TI−N = 2.669 and TN−C = 2.542) and by a vertical solid line for P = 10 (TI−C = 2.119).

where α, β = x, y, z are the indices referring to the space fixed frame, eiα is the α-component

of the unit vector ei, δαβ is the Kronecker symbol, and N is the number of ellipsoids of

revolution present in the system. < P2 > tends to zero in the isotropic phase but retains a

non-zero value because of the finite size of the system. In the nematic phase, < P2 > has

a value above 0.4. For the columnar phase, < P2 > is above 0.9. In the present case, we

observe the I-N-C phase sequence along the isobar at the higher pressure and the sequence

I-C along the other isobar. Note the sharp jump in the < P2 > for the I-C phase transition.

We have investigated orientational dynamics at the single-particle level by monitoring the

temporal evolution of the corresponding second-rank orientational time correlation functions

(OTCF), that is defined by

Cs
2
(t) =

〈
∑

i

P2(ei(0) · ei(t))〉

〈
∑

i

P2(ei(0) · ei(0))〉
, (8)

where P2 is the second rank Legendre polynomial, and the angular brackets stand for

ensemble averaging. In Fig. 2, we show the time evolution of the single-particle second-rank

OTCF at several temperatures in log-log plots. The emergence of a power law decay at

short-to-intermediate times near the I-N phase boundary is notable in Fig. 2(a) from the
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FIG. 2: Time evolution of the single-particle second-rank OTCF in log-log plots for the discotic

system at several temperatures. The dashed lines (red) are the simulation data corresponding

to increasing orientational order parameter or decreasing temperature from the bottom to the

top. The solid lines (blue) are the linear fits to the data, showing the power law decay regimes:

t−α. The valuse of the power law exponent α are given below in the paranthesis. (a) Along the

isobar at P = 25.0 at several temperatures: T = 2.991, 2.693(α = 0.85), 2.646(α = 0.31, 0.35),

and 2.594(α = 0.15, 0.23); (b) Along the isobar at P = 10.0 at all the temperatures studied for

the isotropic phase (T = 3.999, 3.499, 2.997, 2.496, 2.396, 2.298, 2.196, 2.143). The power law decay

regions is absent in the OTCF of isobar at P = 10.0.

linear fit. It follows from Fig. 2(a) that as the system transits across the I-N phase boundary,

two power law relaxation regimes, separated by a plateau, appear giving rise to a step-like

feature. However, the decay of the single-particle second-rank OTCF in the isotropic phase

near the isotropic-columnar phase boundary does not follow any power law as evident in
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Fig. 2(b). Note that the step like relaxation feature which is observed for the former is also

absent in the later.

In optical heterodyne detected optical Kerr effect measurements (OHD-OKE), one probes

collective orientational relaxation [39]. In recent OHD-OKE experiments with calamitic

liquid crystals, the decay of the OKE signal has been found to follow a complex pattern

[32, 33, 34, 35]. The most intriguing feature has been the power law decay regimes at

short-to-intermediate times [33, 34]. We have therefore monitored the time evolution of the

collective second-rank OTCF, defined by

Cc
2
(t) =

〈
∑

i

∑

j

P2(ei(0) · ej(t))〉

〈
∑

i

∑

j

P2(ei(0) · ej(0))〉
. (9)

In the present case, the negative of the time derivative of the collective second-rank OTCF

provides a measure of the experimentally observable OHD-OKE signal. As monitoring the

time evolution of Cc
2
(t) is computationally quite demanding, we have restricted ourselves to

the short-to-intermediate time dynamics that would suffice to compare the most intriguing

aspect of the experimental observations [33, 34, 35]. In Fig. 3, we show in log-log plots the

temporal behavior of the OKE signal derived from present system at several temperatures.

A short-to-intermediate-time power law regime is evident in the decay of the OKE signal on

either side of the I-N transition as illustrated by the linear fitting in Fig. 3(a). In consistency

with the single-particle dynamics, such a power law decay regime is not observed for the

OKE signal in the isotropic phase near the I-C phase boundary as apparent in Fig. 3(b).

It follows from the time evolution of the single-particle second-rank OTCF shown in Fig.

2(a) that as the system settles into the nematic phase, two power law decay regimes, that

are separated by a plateau, emerge. Such a feature bears a close resemblance with what

has been observed recently for a model system of calamitic liquid crystals [31]. The decay

pattern is also similar to those observed for models supercooled molecular liquids [40, 41].

In fact, based on a series of OHD-OKE measurements Fayers and coworkers have recently

drawn an analogy in the orientational dynamics between calamitic liquid crystals in their

isotropic phase near the I-N transition and supercooled molecular liquids [42]. The analogous

dynamics could be captured in a subsequent molecular dynamics simulation study of model

systems of these two classes of soft condensed matter [43]. The short-to-intermediate time
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FIG. 3: The short-to-intermediate time decay of the OKE signal in log-log plots for the discotic

system. The dashed lines (red) are the simulation data and the solid lines show the linear fits (blue)

to the data showing the power law decay regimes: t−α. The values of the power law exponent

α are given below in the parenthesis. (a) Along the isobar at P = 25.0 at several temperatures:

T = 2.991, T = 2.693 (α = 0.208), T = 2.646 (α = 0.194), and T = 2.594 (α = 0.178). (b) Along

the isobar at P = 10.0 at several temperatures: T = 2.298, 2.196, and 2.143 amd power law decay

is absent. Temperature decreases from the top to the bottom at the left of the figure in each case.

power law decay of the OKE signal observed therein bears a close similarity with what is

found in the present discotic system across the I-N transition.

The contrasting behavior observed in orientational relaxation in the isotropic phase near

the I-N and the I-C phase boundaries is noteworthy. Such an observation may throw new

light on the origin of the power law relaxation in the isotropic phase near the I-N transition.

While the I-C transition is strongly first order in nature, the I-N transition is only weakly
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first order with certain characteristics of the continuous transition. This is reflected in the

present case in a much larger change in the density marking the I-C transition as compared

to the I-N transition (data not shown). The weakly first order nature of the I-N transition

appears to play a role in the short-to-intermediate time power law relaxation. It seems fair

to trace the origin of the power law decay in orientational relaxation to the growth in the

orientational correlation length in the isotropic phase near the I-N transition. To this end,

we attempt a theoretical analysis in the next section.

IV. THEORETICAL ANALYSIS

The I-N phase transition is weakly first order both in calamitic and discotic systems. This

is manifested in the growing orientational pair correlation length as the I-N phase bound-

ary is approached from the high temperature isotropic phase. Apparently, a second order

phase transition at a temperature only slightly lower (by ∼ 1K), where the orientational

correlation length would have diverged, is preempted by the weakly first order phase tran-

sition. Nevertheless, even this weakly first order phase transition is driven by the growing

correlation length. The temperature dependent growth of this correlation length ξ(T ) can

be given by the following expression [1] i

ξ(T ) = A(T ∗ − T )−ν (10)

where ν is 0.5 in the Landau mean-field theory.

A simple mode coupling theory, based on time dependent density functional theory, shows

that this growing correlation length can give rise to a power-law decay of the type observed in

simulations. This approach uses the the generalized Debye-Stokes-Einstein relation between

the correlation time, diffusion, and friction [44]

C2(z) =
1

(z + 6ADR(z))
(11)

and

DR(z) =
kBT

I(z + ζ(z))
, (12)

where A is equal to 1 for the single-particle relaxation, but is related to orientational caging

for collective dynamics. It was shown elsewhere, the growing correlation length can give rise

to a singular frequency dependence of ζ over a frequency range ζ(z) ∼ A/zα with α = 0.5

10



[32, 33]. This power law dependence in the frequency dependence of friction in turn gives rise

to a power law decay in the orientational time correlation function along with the slowing

down of the relaxation.

Thus, in the above mentioned theory, the origin of the power law decay is essentially the

same as observed near the critical phenomena [45]. However, one may not expect a universal

behavior since there is no true divergence. The absence of power law decay near the I-C

phase boundary could then be due to the absence of any growing correlation length. The

I-C phase transition is strongly first order in nature where both orientational and positional

order set in at the same time. Since the growth of orientational correlation is small, a power

law decay is not expected.

V. ORIENTATIONAL PAIR DISTRIBUTION

To this end, we have calculated the distance dependent orientational pair distribution

function gll′m(r) [46, 47] wihich is defined by

gll′m(r) = 4πg(r)〈Y ⋆
lm(ωi)Y

⋆
l′m(ωj)〉 (13)

Here, Y ⋆
lm(ω) is a spherical hermonics and ω denotes the sperical polar angle made by the

particle symmetry axis with the intermolecular separation vector. it can be shown that at

sufficiently large separation at which orientations are uncorrelated, two spherical harmonics

can be averaged independently of each other. When the director is taken to define z axis of

the laboratory frame, separate averaging gives

lim
r→∞

gll′m(r) = (−1)mg(r)δl,l′〈Pl〉〈Pl′〉 (14)

This coefficient will be vanished at large separations when ranks l and l′ are different.

While for l = l′ in the isotropic phase where order parameter vanishes and the coefficient

gll′m(r) tend to zero for large separatios, it will have a finite value if long range orientational

correlation is devloped in the system. To verify our assertion made in theoretical section, we

have calculated g220(r) for the systems studied here along both the isobars and presented in

Fig. 4(a) and Fig. 4(b), respectively. While the growth of orientational correlation length

is clearly evident across the I-N transition for large separations, such a growth is found to

be totally absent in the isotropic phase near the I-C phase boundary.
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FIG. 4: The orientational pair distribution function g220(r) for the model discotic system along

the two isobars: (a) the one at P = 25 and (b) the other at P = 10. The temperature decreases

from the bottom to the top at the position of the dominant peak of the curves starting from high

temperature isotropic phase down to the temperature which is just above the temperature at which

columnar phase appears. The growth of long range orientational correlation is notable from the

blue curves for I-N-C isobar.

VI. CONCLUSION

Let us first summarize the main results of the present work. In order to understand

orientational relaxation in disk-like molecules that form discotic phase on cooling, we have

performed molecular dynamics simulations of a model system that consists of oblate ellip-

soids of revolution interacting with each other via a variant of the Gay-Berne pair potential.

The system has been studied along two isobars so chosen that the phase sequence I-N-C

12



appears upon cooling along the one and the sequence I-C along the other. We have inves-

tigated temperature dependent orientational relaxation across the I-N transition and in the

isotropic phase near the I-C phase boundary with a focus on the short-to-intermediate time

decay behavior. While the orientational relaxation across the I-N phase boundary shows a

power law decay at short-to-intermediate times, such power law relaxation is not observed

in the isotropic phase near the I-C phase boundary. Study of orientational pair distribution

function shows that there is a growth of orientational pair correlation near the I-N transi-

tion whereas such a growth is absent in the isotropic phase near the I-C phase boundary.

As the system settles into the nematic phase, the decay of the single-particle second-rank

orientational time correlation function follows a pattern that is similar to what is observed

with calamitic liquid crystals and supercooled molecular liquids [31, 40, 41].

In order to further understand microscopic slowing down of the collective OTCF, we

recall the expression [48]
τ c
2

τ s
2

=
(1 + g2)

(1 + j2)
(15)

where g2 is the static second rank Kirkwood factor [49]

g2 =
∑

j 6=i

P2(ei · ej) =
1

N

∑

i

∑

j 6=i

P2(ei · ej) (16)

and j2 is a dynamic quantity which can be expressed in terms memory functions of orienta-

tion as [50]

j2 = N

∫ ∞

0
〈α̇yz

1
eiQLtα̇yz

2
〉

∫ ∞

0
〈α̇yz

1
eiQLtα̇yz

1
〉

(17)

where α̇yz
1

= (α‖ − α⊥)iL(ey
1
ez
1
) and Q is the projection operator. Here L is the Liouville

operator and ex,y
i is the x(or y) component of the unit vector along the short axis of the ith

oblate ellipsoid of revolution. It is non-trivial to calculate j2 from first principles but one can

always estimate it from Eq 15 where other qnatities are not hard to calculate in principle.

We have calculated static second rank Kirkwood g2 factor [51] which may be thaught

of the average number of molecules whose orientations are perfectly correlated to that of

a given molecule [52]. We find that g2 shows the same behaviour as the order parameter

variation for both the isobars studied here. Dynamic quantity j2 has no such straight

foroward physical interpretation like g2. Because of the slow power law decay, it has not

been possible to calculate the relaxation times (τ c
2

and τ s
2
) near the I-N phase boundary.

However, when calculated away from the phase boundary, when nrelaxation functions are
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nearly single exponential, the value of j2 is found to be small. The dynamic quantity usually

has small and negative value and also will not have much variation across the transitions as

observed for several studies [49, 53].

In contrast to our observation of the lack of power law decay in orientational relaxation of

the discotic system in the isotropic phase near the I-C phase boundary, a very recent OHD-

OKE experimental study by Fayer and coworkers finds a power law t−0.76 at short times and

von schweidler power law t−0.26 at intermediate times along with a long time exponential

relaxation in the isotropic phase above the I-C transition [54]. The decay pattern is somewhat

similar to what was observed for the calamitic system in the isotropic phase near I-N phase

transition. It is possible that nematic fluctuations were important in their experimental

system depending upon the choice of temperature. This point deserves further study.
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