11 research outputs found

    Factors influencing future career interests of pharmacy interns in Saudi Arabia: a survey from 25 colleges of pharmacy

    No full text
    Abstract Background Hundreds of pharmacists graduate from pharmacy colleges in Saudi Arabia, and various factors influence their choice of career pathway. Very few single-institution studies assessed career choices of pharmacy students with or without evaluating the influencing factors. Therefore, this study aimed to evaluate career choices and the associating factors of pharmacy interns from multiple colleges in Saudi Arabia. Methods This was a cross-sectional study that surveyed pharmacy interns from 25 pharmacy colleges in Saudi Arabia using an online questionnaire. The survey was sent during the last rotation month in the internship year (May–June 2022). Results Of 454 participants, 411 (90.5%) were enrolled in Doctor of Pharmacy programs. While most participants were interested in becoming clinical pharmacists (n = 183; 40.3%), a considerable number were also interested in working in different sectors of pharmaceutical companies and industry (n = 127; 28%). Internship training significantly correlated with selecting clinical pharmacy specialist career (r = 0.19; P = 0.0001), whereas salary/financial incentives significantly influenced the choice of working as sales and marketing representatives and pharmacy product specialists in pharmaceutical companies (r = 0.29 and 0.24; P < 0.0001 for both). College courses correlated with choosing academia in pharmaceutical sciences (r = 0.20; P < 0.0001), whereas summer training correlated with the community pharmacy career (r = 0.11; P = 0.02). Conclusion Pharmacy colleges should utilize results from this study to enhance the exposure of pharmacy students during their academic years to different pharmacy career pathways by allowing the opportunity to shadow pharmacists from different sectors as part of college courses, inviting previous graduates, and activating the role of academic advisors in career orientation

    Metabolic Profiling and Investigation of the Modulatory Effect of <i>Fagonia cretica</i> L. Aerial Parts on Hepatic CYP3A4 and UGT2B7 Enzymes in Streptozotocin—Induced Diabetic Model

    No full text
    Drug-metabolizing enzymes are either boosted or suppressed by diabetes mellitus. This research was designed to explore Fagonia cretica L. aerial parts’ impact on CYP3A4 and UGT2B7 activity and their mRNA expression in diabetic rats. Fagonia cretica (F. cretica) dried powder was sequentially extracted with n-hexane, chloroform, ethyl acetate, methanol, and water. The methanol extract and aqueous fraction presented the most significant potential to decrease the concentration of alpha-hydroxyl midazolam, with 176.0 ± 0.85 mg/Kg and 182.9 ± 0.99 mg/Kg, respectively, compared to the streptozotocin (STZ)-induced diabetic group, reflecting the inhibition in CYP3A4 activity. The fold change in mRNA expression of CYP3A4 was decreased significantly by the methanol extract, and the aqueous fraction of F. cretica estimated by 0.15 ± 0.002 and 0.16 ± 0.001, respectively, compared with the diabetic group. Morphine metabolism was significantly increased in rats treated with F. cretica methanol extract and its aqueous fraction, displaying 93.4 ± 0.96 mg/Kg and 96.4 ± 1.27 mg/Kg, respectively, compared with the metabolism of morphine in the diabetic group, which highlights the induction of UGT2B7 activity. The fold change in mRNA expression of UGT2B7 was significantly increased by the methanol extract and the aqueous fraction, estimated at 8.14 ± 0.26 and 7.17 ± 0.23 respectively, compared to the diabetic group. Phytochemical analysis was performed using high-performance liquid chromatography (HPLC), where the methanol extract showed more flavonoids and phenolic compounds compared to the aqueous fraction of F. cretica. The obtained results were further consolidated by molecular docking studies, where quercetin showed the best fitting within the active pocket of CYP3A4, followed by gallic acid, displaying free binding energies (∆G) of −30.83 and −23.12 kcal/mol, respectively. Thus, F. cretica could serve as a complementary medicine with standard anti-diabetic therapy that can modulate the activity of the drug-metabolizing enzymes

    Phytoconstituents and Pharmacological Activities of Indian Camphorweed (<i>Pluchea indica</i>): A Multi-Potential Medicinal Plant of Nutritional and Ethnomedicinal Importance

    No full text
    Pluchea indica (L.) Less. (Asteraceae) commonly known as Indian camphorweed, pluchea, or marsh fleabane has gained great importance in various traditional medicines for its nutritional and medicinal benefits. It is utilized to cure several illnesses such as lumbago, kidney stones, leucorrhea, inflammation, gangrenous and atonic ulcer, hemorrhoids, dysentery, eye diseases, itchy skin, acid stomach, dysuria, abdominal pain, scabies, fever, sore muscles, dysentery, diabetes, rheumatism, etc. The plant or its leaves in the form of tea are commonly used for treating diabetes and rheumatism. The plant is a rich source of calcium, vitamin C, dietary fiber, and β-carotene. Various biomolecules have been isolated from P. indica, including thiophenes, terpenes, quinic acids, sterols, lignans, phenolics, and flavonoids. The current review reports detailed information about the phytoconstituents and pharmacological relevance of P. indica and the link to its traditional uses. The reported studies validated the efficacy and safety of P. indica, as well as supported its traditional uses for treating various ailments and promoting health and well-being. Thus, this could encourage the development of this plant into a healthy food supplement or medicine for the prevention and treatment of various diseases. However, further studies on the drug interactions, mechanism of action, pharmacokinetics, toxicology, and metabolism, as well as clinical trials, should be carried out

    Valorization of Pimenta racemosa Essential Oils and Extracts: GC-MS and LC-MS Phytochemical Profiling and Evaluation of Helicobacter pylori Inhibitory Activity

    No full text
    Pimenta racemosa is a commonly known spice used in traditional medicine to treat several ailments. In this study, comprehensive phytochemical profiling of the essential oils and methanol extracts of P. racemosa leaves and stems was performed, alongside assessing their potential Helicobacter pylori inhibitory activity in vitro and in silico. The essential oils were chemically profiled via GC-MS. Moreover, the methanol extracts were profiled using HPLC-PDA-ESI-MS/MS. The antibacterial activity of the essential oils and methanol extracts against H. pylori was determined by adopting the micro-well dilution method. GC-MS analysis unveiled the presence of 21 constituents, where eugenol represented the major component (57.84%) and (59.76%) in both leaves and stems of essential oils, respectively. A total of 61 compounds were annotated in both leaves and stems of P. racemosa methanolic extracts displaying richness in phenolic compounds identified as (epi)catechin and (epi)gallocatechin monomers and proanthocyanidins, hydrolyzable tannin derivatives (gallotannins), flavonoids, and phenolic acids. The stem essential oil showed the most promising inhibitory effects on H. pylori, exhibiting an MIC value of 3.9 &micro;g/mL, comparable to clarithromycin with an MIC value of 1.95 &micro;g/mL. Additionally, in silico molecular modeling studies revealed that decanal, eugenol, terpineol, delta-cadinene, and amyl vinyl showed potential inhibitory activity on H. pylori urease as demonstrated by high-fitting scores indicating good binding to the active sites. These findings indicate that P. racemosa comprises valuable phytochemical constituents with promising therapeutic effects, particularly the stem, an economic agro-industrial waste

    Production of a New Cyclic Depsipeptide by the Culture Broth of Staphylococcus sp. Isolated from Corallina officinalis L.

    Get PDF
    A new cyclic depsipeptide (1) has been isolated from culture broth of Staphylococcus sp. (No. P-100826-4-6) derived from Corallina officinalis L., together with the known compounds indol-3-carboxylic acid (2), 1,5-dideoxy-3-C-methyl arabinitol (3), thymine (4), uracil (5), cyclo (L-pro-L-omet) (6) and macrolactin B (7). The structure of (1) was established to be cyclo (2α, 3-diaminopropoinc acid-L-Asn-3-β-hydroxy-5-methyl-tetradecanoic acid-L-Leu1-L-Asp-L-Val-L-Leu2-L-Leu3) by extensive spectroscopic techniques including1 H NMR,13 C NMR,1 H-1 H COSY, HMBC, HSQC, NOESY, and HRFABMS. The antimicrobial activities of compounds 1?7 were evaluated. Compounds 1?5, and 7 showed moderate antimicrobial activity while compound 6 exhibited a potent antimicrobial and antifungal activities

    Thiophenes—Naturally Occurring Plant Metabolites: Biological Activities and In Silico Evaluation of Their Potential as Cathepsin D Inhibitors

    No full text
    Naturally, thiophenes represent a small family of natural metabolites featured by one to five thiophene rings. Numerous plant species belonging to the family Asteraceae commonly produce thiophenes. These metabolites possessed remarkable bioactivities, including antimicrobial, antiviral, anti-inflammatory, larvicidal, antioxidant, insecticidal, cytotoxic, and nematicidal properties. The current review provides an update over the past seven years for the reported natural thiophene derivatives, including their sources, biosynthesis, spectral data, and bioactivities since the last review published in 2015. Additionally, with the help of the SuperPred webserver, an AI (artificial intelligence) tool, the potential drug target for the compounds was predicted. In silico studies were conducted for Cathepsin D with thiophene derivatives, including ADMET (drug absorption/distribution/metabolism/excretion/and toxicity) properties prediction, molecular docking for the binding interaction, and molecular dynamics to evaluate the ligand–target interaction stability under simulated physiological conditions

    Production of a New Cyclic Depsipeptide by the Culture Broth of Staphylococcus sp. Isolated from Corallina officinalis L.

    Get PDF
    A new cyclic depsipeptide (1) has been isolated from culture broth of Staphylococcus sp. (No. P-100826-4-6) derived from Corallina officinalis L., together with the known compounds indol-3-carboxylic acid (2), 1,5-dideoxy-3-C-methyl arabinitol (3), thymine (4), uracil (5), cyclo (L-pro-L-omet) (6) and macrolactin B (7). The structure of (1) was established to be cyclo (2α, 3-diaminopropoinc acid-L-Asn-3-β-hydroxy-5-methyl-tetradecanoic acid-L-Leu1-L-Asp-L-Val-L-Leu2-L-Leu3) by extensive spectroscopic techniques including1 H NMR,13 C NMR,1 H-1 H COSY, HMBC, HSQC, NOESY, and HRFABMS. The antimicrobial activities of compounds 1–7 were evaluated. Compounds 1–5, and 7 showed moderate antimicrobial activity while compound 6 exhibited a potent antimicrobial and antifungal activities

    Development, optimization, and evaluation of luliconazole nanoemulgel for the treatment of fungal infection

    No full text
    The present study aimed to optimize luliconazole nanoemulsion using Box–Behnken statistical design, which was further incorporated into the polymeric gel of Carbopol 934. The formulation was characterized for its size, entrapment efficiency, ex vivo permeation, and mechanism of release. The size of the dispersed globules of the optimized drug-loaded nanoemulsion was found to be 17 ± 3.67 nm with a polydispersity index (PDI) less than 0.5. Although the surface charge was recorded at –9.53 ± 0.251, the stability was maintained by the polymeric matrix that prevented aggregation and coalescence of the dispersed globules. The luliconazole-nanoemulgel (LUL-NEG) was characterized for drug content analysis, viscosity, pH, and refractive index, where the results were found to be 99.06 ± 0.59%, 9.26 ± 0.08 Pa.s, 5.65 ± 0.17, and 1.31 ± 0.08, respectively. The permeation across the rat skin was found to be significantly higher with LUL-NEG when compared with LUL gel. Furthermore, the skin irritation test performed in experimental animals revealed that the blank NEG, as well as the LUL-NEG, did not produce any signs of erythema following 48 h exposure. In addition, the histopathological findings of the experimental skins reported no abnormal signs at the formulation application site. Finally, the NEG formulation was found to create a statistically significant zone of inhibition (P < 0.05) when compared to all other test groups. Overall, it could be summarized that the nanoemulgel approach of delivering luliconazole across the skin to treat skin fungal infections could be a promising strategy

    Updates on molecular and biochemical development and progression of prostate cancer

    No full text
    Prostate cancer (PCa) represents the most commonly non-cutaneous diagnosed cancer in men worldwide and occupies a very wide area of preclinical and clinical research. Targeted therapy for any cancer depends on the understanding of the molecular bases and natural behaviour of the diseases. Despite the well-known effect of androgen deprivation on PCa, many patients develop resistance either for antiandrogen therapy or other new treatment modalities such as checkpoint inhibitors and chemotherapy. Comprehensive understanding of the development of PCa as well as of the mechanisms underlying its progression is mandatory to maximise the benefit of the current approved medications or to guide the future research for targeted therapy of PCa. The aim of this review was to provide updates on the most recent mechanisms regarding the development and the progression of PCa. According to the current understanding, future treatment strategies should include more predictive genetic and biomarker analysis to assign different patients to the expected most appropriate and effective treatment

    Phyto-Phospholipid Conjugated Scorpion Venom Nanovesicles as Promising Carrier That Improves Efficacy of Thymoquinone against Adenocarcinoma Human Alveolar Basal Epithelial Cells

    No full text
    Lung cancer is a dangerous type of cancer in men and the third leading cause of cancer-related death in women, behind breast and colorectal cancers. Thymoquinone (THQ), a main compound in black seed essential oils, has a variety of beneficial effects, including antiproliferative, anti-inflammatory, and antioxidant properties. On the other hand, scorpion venom peptides (SV) induce apoptosis in the cancer cells, making it a promising anticancer agent. THQ, SV, and Phospholipon&reg; 90H (PL) were incorporated in a nano-based delivery platform to assess THQ&rsquo;s cellular uptake and antiproliferative efficacy against a lung cancer cell line derived from human alveolar epithelial cells (A549). Several nanovesicles were prepared and optimized using factorial experimental design. The optimized phytosome formulation contained 79.0 mg of PL and 170.0 mg of SV, with vesicle size and zeta potential of 209.9 nm and 21.1 mV, respectively. The IC50 values revealed that A549 cells were significantly more sensitive to the THQ formula than the plain formula and THQ. Cell cycle analysis revealed that THQ formula treatment resulted in significant cell cycle arrest at the S phase, increasing cell population in this phase by 22.1%. Furthermore, the THQ formula greatly increased cell apoptosis (25.17%) when compared to the untreated control (1.76%), plain formula (11.96%), or THQ alone (13.18%). The results also indicated that treatment with THQ formula significantly increased caspase-3, Bax, Bcl-2, and p53 mRNA expression compared to plain formula and THQ. In terms of the inflammatory markers, THQ formula significantly reduced the activity of TNF-&alpha; and NF-&kappa;B in comparison with the plain formula and THQ only. Overall, the findings from the study proved that a phytosome formulation of THQ could be a promising therapeutic approach for the treatment of lung adenocarcinoma
    corecore