12 research outputs found

    Nodal-Dependent Mesendoderm Specification Requires the Combinatorial Activities of FoxH1 and Eomesodermin

    Get PDF
    Vertebrate mesendoderm specification requires the Nodal signaling pathway and its transcriptional effector FoxH1. However, loss of FoxH1 in several species does not reliably cause the full range of loss-of-Nodal phenotypes, indicating that Nodal signals through additional transcription factors during early development. We investigated the FoxH1-dependent and -independent roles of Nodal signaling during mesendoderm patterning using a novel recessive zebrafish FoxH1 mutation called midway, which produces a C-terminally truncated FoxH1 protein lacking the Smad-interaction domain but retaining DNA–binding capability. Using a combination of gel shift assays, Nodal overexpression experiments, and genetic epistasis analyses, we demonstrate that midway more accurately represents a complete loss of FoxH1-dependent Nodal signaling than the existing zebrafish FoxH1 mutant schmalspur. Maternal-zygotic midway mutants lack notochords, in agreement with FoxH1 loss in other organisms, but retain near wild-type expression of markers of endoderm and various nonaxial mesoderm fates, including paraxial and intermediate mesoderm and blood precursors. We found that the activity of the T-box transcription factor Eomesodermin accounts for specification of these tissues in midway embryos. Inhibition of Eomesodermin in midway mutants severely reduces the specification of these tissues and effectively phenocopies the defects seen upon complete loss of Nodal signaling. Our results indicate that the specific combinations of transcription factors available for signal transduction play critical and separable roles in determining Nodal pathway output during mesendoderm patterning. Our findings also offer novel insights into the co-evolution of the Nodal signaling pathway, the notochord specification program, and the chordate branch of the deuterostome family of animals

    Improving robustness of hydrologic ensemble predictions through probabilistic pre- and post-processing in sequential data assimilation

    No full text
    2017-2018 > Academic research: refereed > Publication in refereed journal201807 bcwhVersion of RecordPublishe

    Examining dynamic interactions among experimental factors influencing hydrologic data assimilation with the ensemble Kalman filter

    No full text
    202305 bckwAccepted ManuscriptOthersHong Kong Polytechnic UniversityPublishe

    Formal modelling of toll like receptor 4 and JAK/STAT signalling pathways: Insight into the roles of SOCS-1, interferon-b and proinflammatory cytokines in Sepsis

    No full text
    Sepsis is one of the major causes of human morbidity and results in a considerable number of deaths each year. Lipopolysaccharide-induced sepsis has been associated with TLR4 signalling pathway which in collaboration with the JAK/STAT signalling regulate endotoxemia and inflammation. However, during sepsis our immune system cannot maintain a balance of cytokine levels and results in multiple organ damage and eventual death. Different opinions have been made in previous studies about the expression patterns and the role of proinflammatory cytokines in sepsis that attracted our attention towards qualitative properties of TLR4 and JAK/STAT signalling pathways using computer-aided studies. René Thomas' formalism was used to model septic and non-septic dynamics of TLR4 and JAK/STAT signalling. Comparisons among dynamics were made by intervening or removing the specific interactions among entities. Among our predictions, recurrent induction of proinflammatory cytokines with subsequent downregulation was found as the basic characteristic of septic model. This characteristic was found in agreement with previous experimental studies, which implicate that inflammation is followed by immunomodulation in septic patients. Moreover, intervention in downregulation of proinflammatory cytokines by SOCS-1 was found desirable to boost the immune responses. On the other hand, interventions either in TLR4 or transcriptional elements such as NFκB and STAT were found effective in the downregulation of immune responses. Whereas, IFN-β and SOCS-1 mediated downregulation at different levels of signalling were found to be associated with variations in the levels of proinflammatory cytokines. However, these predictions need to be further validated using wet laboratory experimental studies to further explore the roles of inhibitors such as SOCS-1 and IFN-β, which may alter the levels of proinflammatory cytokines at different stages of sepsis
    corecore