43 research outputs found

    304Nuclear targeting apelin induces phenotypic transition of vascular smooth muscle cells

    Get PDF
    Background: Apelin, and its receptor APJ, are a peptidic system playing a crucial role in vascular diseases. However, the role of apelin in atherogenesis and smooth muscle cell (SMC) proliferation remains unclear. We isolated 2 distinct SMC phenotypes from porcine coronary artery: spindle-shaped (S) and rhomboid (R). Biological features of R-SMCs (i.e. enhanced proliferative and migratory activities as well as poor level of differentiation) explain their capacity to accumulate into the intima. S100A4 is a marker of R-SMCs in vitro and of intimal SMCs, both in pig and human. S100A4 is a Ca2+-binding protein that can also be secreted; it has extracellular functions probably via the receptor for advanced glycation end products (RAGE). Purpose: Investigate the effects of apelin on SMC phenotypic transition and S100A4 expression and release. Methods and Results: We observed that apelin was highly expressed in R-SMCs particularly in their nucleus. P-SORT software analysis of preproapelin sequence suggested that N-terminal truncated apelin may target the nucleus, and we confirmed this in SMCs by overexpression of mutated preproapelin-His-tag. Transfection of mutated preproapelin-His-tag encoding plasmid in differentiated S-SMCs induced a transition towards a R-phenotype associated with increased proliferative activity, downregulation of SMC differentiation markers (i.e. alpha-smooth muscle actin), and increased nuclear expression and release of S100A4. In contrast, transfection of S-SMCs with wild type preproapelin-His-tag encoding plasmid did not induce nuclear targeting of Apelin or S100A4, and did not change the S-phenotype. Stimulation of S-SMCs with PDGF-BB, known to induce a transition to the R-phenotype, yielded nuclear targeting of both apelin and S100A4. In vivo, Apelin was expressed in SMC nuclei of stent-induced intimal thickening while its expression in the media was mainly cytoplasmic. Conclusions: Our results suggest that nuclear targeting of apelin in SMCs acts on S100A4 expression and release, cell proliferation and differentiation. The pathophysiological consequences of this retargeting could be instrumental in the understanding of artherosclerosi

    Stress-induced decreases in local cerebral glucose utilization in specific regions of the mouse brain

    Get PDF
    BACKGROUND: Restraint stress in rodents has been reported to activate the hypothalamic-pituitary-adrenocortical (HPA) axis and to increase c-fos expression in regions that express components of the corticotropin-releasing factor (CRF) system. We have previously reported that acute central administration of CRF increased a measure of relative local cerebral glucose utilization (LCGU), a measure of neuronal activity in specific brain regions, and activated the HPA axis in mice. It was hypothesized that the involvement of the CRF system in the stress response would lead to similar changes in relative LCGU after restraint stress. In the present studies the effect of restraint stress on relative LCGU and on the HPA axis in C57BL/6N mice were examined. FINDINGS: Restraint stress activated the HPA axis in a restraint-duration dependent manner, but in contrast to the reported effects of CRF, significantly decreased relative LCGU in frontal cortical, thalamic, hippocampal and temporal dissected regions. These findings support evidence that stressors enforcing limited physical activity reduce relative LCGU, in contrast to high activity stressors such as swim stress. CONCLUSIONS: In conclusion, the present studies do not support the hypothesis that stress-induced changes in relative LCGU are largely mediated by the CRF system. Further studies will help to delineate the role of the CRF system in the early phases of the relative LCGU response to stress and investigate the role of other neurotransmitter systems in this response

    Assessment of Renal Function by the Stable Oxygen and Hydrogen Isotopes in Human Blood Plasma

    Get PDF
    Water (H2O) is the most abundant and important molecule of life. Natural water contains small amount of heavy isotopes. Previously, few animal model studies have shown that the isotopic composition of body water could play important roles in physiology and pathophysiology. Here we study the stable isotopic ratios of hydrogen (δ2H) and oxygen (δ18O) in human blood plasma. The stable isotopic ratio is defined and determined by δsample = [(Rsample/RSTD)−1] * 1000, where R is the molar ratio of rare to abundant, for example, 18O/16O. We observe that the δ2H and the δ18O in human blood plasma are associated with the human renal functions. The water isotope ratios of the δ2H and δ18O in human blood plasma of the control subjects are comparable to those of the diabetes subjects (with healthy kidney), but are statistically higher than those of the end stage renal disease subjects (p<0.001 for both ANOVA and Student's t-test). In addition, our data indicate the existence of the biological homeostasis of water isotopes in all subjects, except the end stage renal disease subjects under the haemodialysis treatment. Furthermore, the unexpected water contents (δ2H and δ18O) in blood plasma of body water may shed light on a novel assessment of renal functions
    corecore