23 research outputs found

    An adaptive multi-agent system for task reallocation in a MapReduce job

    Get PDF
    International audienceWe study the problem of task reallocation for load-balancing of MapReduce jobs in applications that process large datasets. In this context, we propose a novel strategy based on cooperative agents used to optimise the task scheduling in a single MapReduce job. The novelty of our strategy lies in the ability of agents to identify opportunities within a current unbalanced allocation, which in turn trigger concurrent and one-to-many negotiations amongst agents to locally reallocate some of the tasks within a job. Our contribution is that tasks are reallocated according to the proximity of the resources and they are performed in accordance to the capabilities of the nodes in which agents are situated. To evaluate the adaptivity and responsiveness of our approach, we implement a prototype test-bed and conduct a vast panel of experiments in a heterogeneous environment and by exploring varying hardware configurations. This extensive experimentation reveals that our strategy significantly improves the overall runtime over the classical Hadoop data processing

    Allocation équitable de tùches pour l'analyse de données massives

    Get PDF
    L'URL de l'ouvrage est la suivante:http://www.cepadues.com/livres/jfsma-2016-systemes-multi-agents-simulations-9782364935594.htmlInternational audienceMany companies are using MapReduce applications to process very large amounts of data. Static optimization of such applications is complex because they are based on user-defined operations, called map and reduce, which prevents some algebraic optimization. In order to optimize the task allocation, several systems collect data from previous runs and predict the performance doing job profiling. However they are not effective during the learning phase, or when a new type of job or data set appears. In this paper, we present an adaptive multiagent system for large data sets analysis with MapReduce. We do not preprocess data and we adopt a dynamic approach, where the reducer agents interact during the job. In order to decrease the workload of the most loaded reducer - and so the execution time - we propose a task re-allocation based on negotiation.De nombreuses entreprises utilisent l'application MapReduce pour le traitement de donnĂ©es massives. L'optimisation statique de telles applications est complexe car elles reposent sur des opĂ©rations dĂ©finies par l'utilisateur, appelĂ©es map et reduce, ce qui empĂȘche une optimisation algĂ©brique. Afin d'optimiser l'allocation des tĂąches, plusieurs systĂšmes collectent des donnĂ©es Ă  partir des exĂ©cutions prĂ©cĂ©dentes et prĂ©disent les performances en faisant une analyse de la tĂąche. Cependant, ces systĂšmes ne sont pas efficaces durant la phase d'apprentissage ou lorsqu'un nouveau type de tĂąches ou de donnĂ©es apparait. Dans ce papier, nous prĂ©sentons un systĂšme multi-agents adaptatif pour l'analyse de donnĂ©es massives avec MapReduce. Nous ne prĂ©-traitons pas les donnĂ©es et adoptons une approche dynamique oĂč les agents reducers interagissent durant l'exĂ©cution. Nous proposons une rĂ©-allocation des tĂąches basĂ©e sur la nĂ©gociation pour parvenir Ă  faire dĂ©croitre la charge de travail du plus chargĂ© des agents reducers et ainsi rĂ©duire le temps d'exĂ©cution

    FaceTuneGAN: Face Autoencoder for Convolutional Expression Transfer Using Neural Generative Adversarial Networks

    Get PDF
    In this paper, we present FaceTuneGAN, a new 3D face model representation decomposing and encoding separately facial identity and facial expression. We propose a first adaptation of image-toimage translation networks, that have successfully been used in the 2D domain, to 3D face geometry. Leveraging recently released large face scan databases, a neural network has been trained to decouple factors of variations with a better knowledge of the face, enabling facial expressions transfer and neutralization of expressive faces. Specifically, we design an adversarial architecture adapting the base architecture of FUNIT and using SpiralNet++ for our convolutional and sampling operations. Using two publicly available datasets (FaceScape and CoMA), FaceTuneGAN has a better identity decomposition and face neutralization than state-of-the-art techniques. It also outperforms classical deformation transfer approach by predicting blendshapes closer to ground-truth data and with less of undesired artifacts due to too different facial morphologies between source and target

    Stratégie situationnelle pour l'équilibrage de charge

    Get PDF
    National audienceWe study a novel location-aware strategy for distributed systems where cooperating agents perform the load-balancing. The strategy allows agents to identify opportunities within a current unbalanced allocation, which in turn triggers concurrent and one-to-many negotiations amongst agents to locally reallocate some tasks. The tasks are reallocated according to the proximity of the resources and they are performed in accordance with the capabilities of the nodes in which agents are situated. This dynamic and ongoing negotiation process takes place concurrently with the task execution and so the task allocation process is adaptive to disruptions (task consumption, slowing down nodes). We evaluate the strategy in a multi-agent deployment of the MapReduce design pattern for processing large datasets. Empirical results demonstrate that our strategy significantly improves the overall runtime of the data processing.Nous Ă©tudions une stratĂ©gie qui tient compte de la localitĂ© des ressources pour Ă©quilibrer les charges dans un systĂšme distribuĂ©. Cette stratĂ©gie permet aux agents coopĂ©ratifs d'identifier une allocation non Ă©quilibrĂ©e, voire de dĂ©clencher des enchĂšres concurrentes pour rĂ©allouer localement certaines des tĂąches. Les tĂąches sont rĂ©allouĂ©es en tenant compte de l'accessibilitĂ© des ressources pour les agents ; elles sont exĂ©cutĂ©es conformĂ©ment aux capacitĂ©s des noeuds de calcul sur lesquels se trouvent les agents. Ce processus de nĂ©gociation dynamique et continu est concurrent Ă  l'exĂ©cution des tĂąches, ce qui permet d'adapter l'allocation des tĂąches aux perturbations (exĂ©cution de tĂąche, chute de performance d'un nƓud). Nous Ă©valuons cette stratĂ©gie dans le cadre du dĂ©ploiement multi-agents de MapReduce. Ce patron de conception permet le traitement distribuĂ© de donnĂ©es massives. Les rĂ©sultats empiriques dĂ©montrent que notre stratĂ©gie amĂ©liore significativement le temps d'exĂ©cution du traitement d'un jeu de donnĂ©es

    A Location-Aware Strategy for Agents Negotiating Load-balancing

    Get PDF
    International audienceWe study a novel location-aware strategy for distributed systems where cooperating agents perform the load-balancing. The strategy allows agents to identify opportunities within a current unbalanced allocation , which in turn triggers concurrent and one-to-many negotiations amongst agents to locally reallocate some tasks. The tasks are reallocated according to the proximity of the resources and they are performed in accordance with the capabilities of the nodes in which agents are situated. This dynamic and ongoing negotiation process takes place concurrently with the task execution and so the task allocation process is adaptive to disruptions (task consumption, slowing down nodes). We evaluate the strategy in a multi-agent deployment of the MapReduce design pattern for processing large datasets. Empirical results demonstrate that our strategy significantly improves the overall runtime of the data processing

    Multi-agent negotiation for dynamic task reallocation and application to the MapReduce design pattern

    No full text
    Le problĂšme Rm||Cmax consiste Ă  allouer un ensemble de tĂąches Ă  m agents de sorte Ă  minimiser le makespan de l’allocation, c’est-Ă -dire le temps d’exĂ©cution de l’ensemble des tĂąches. Ce problĂšme est connu pour ĂȘtre NP-dur dĂšs que les tĂąches sont allouĂ©es Ă  deux agents ou plus (m ≄ 2). De plus, il est souvent admis que le coĂ»t d’une tĂąche est prĂ©cisĂ©ment estimĂ© pour un agent et que ce coĂ»t ne varie pas au cours de l’exĂ©cution des tĂąches. Dans cette thĂšse, je propose une approche dĂ©centralisĂ©e et dynamique pour l’amĂ©lioration d’une allocation de tĂąches. Ainsi, Ă  partir d’une allocation initiale et pendant qu’ils exĂ©cutent les tĂąches, les agents collaboratifs initient de multiples enchĂšres pour rĂ©allouer les tĂąches qui restent Ă  exĂ©cuter. Ces rĂ©allocations sont socialement rationnelles, c’est-Ă -dire qu’un agent accepte de prendre en charge une tĂąche initialement allouĂ©e Ă  un autre agent si la dĂ©lĂ©gation de cette tĂąche bĂ©nĂ©ficie Ă  l’ensemble du systĂšme en faisant dĂ©croĂźtre le makespan. De plus, le dynamisme du procĂ©dĂ© permet d’amĂ©liorer une allocation malgrĂ© une fonction de coĂ»t peu prĂ©cise et malgrĂ© les variations de performances qui peuvent survenir lors de l’exĂ©cution des tĂąches. Cette thĂšse offre un cadre formel pour la modĂ©lisation et la rĂ©solution multi-agents d’un problĂšme de rĂ©allocation de tĂąches situĂ©es. Dans un tel problĂšme, la localitĂ© des ressources nĂ©cessaires Ă  l’exĂ©cution d’une tĂąche influe sur son coĂ»t pour chaque agent du systĂšme. À partir de ce cadre, je prĂ©sente le protocole d’interaction des agents et je propose plusieurs stratĂ©gies pour que les choix des agents aient le plus d’impact sur le makespan de l’allocation courante. Dans le cadre applicatif de cette thĂšse, je propose d’utiliser ce processus de rĂ©allocation de tĂąches pour amĂ©liorer le patron de conception MapReduce. TrĂšs utilisĂ© pour le traitement distribuĂ© de donnĂ©es massives, MapReduce possĂšde nĂ©anmoins des biais que la rĂ©allocation dynamique des tĂąches peut aider Ă  contrer. J’ai donc implĂ©mentĂ© un prototype distribuĂ© qui s’inscrit dans le cadre formel et implĂ©mente le patron de conception MapReduce. GrĂące Ă  ce prototype, je suis en mesure d’évaluer l’apport du processus de rĂ©allocation et l’impact des diffĂ©rentes stratĂ©gies d’agent.The Rm||Cmax problem consists in allocating a set of tasks to m agents in order to minimize the makespan of the allocation, i.e. the execution time of all the tasks. This problem is known to be NP-hard as soon as the tasks are allocated to two or more agents (m ≄ 2). In addition, it is often assumed that the cost of a task is accurately estimated for an agent and that this cost does not change during the execution of tasks. In this thesis, I propose a decentralized and dynamic approach to improve the allocation of tasks. Thus, from an initial allocation and while they are executing tasks, collaborative agents initiate multiple auctions to reallocate the remaining tasks to be performed. These reallocations are socially rational, i.e. an agent agrees to take on a task initially allocated to another agent if the delegation of this task benefits to the entire system by decreasing the makespan. In addition, the dynamism of the process makes it possible to improve an allocation despite an inaccurate cost function and despite the variations of performance that can occur during the execution of tasks. This thesis provides a formal framework for multi-agent modeling and multi-agent resolution of a located tasks reallocation problem. In such a problem, the locality of the resources required to perform a task affects its cost for each agent of the system. From this framework, I present the interaction protocol used by the agents and I propose several strategies to ensure that the choices of agents have the greatest impact on the makespan of the current allocation. In the applicative context of this thesis, I propose to use this tasks reallocation process to improve the MapReduce design pattern. Widely used for the distributed processing of massive data, MapReduce has biases that the dynamic tasks reallocation process can help to counter. I implemented a distributed prototype that fits into the formal framework and implements the MapReduce design pattern. Thanks to this prototype, I am able to evaluate the effectiveness of the reallocation process and the impact of the different agent strategies

    Négociation multi-agents pour la réallocation dynamique de tùches: et application au patron de conception MapReduce

    No full text
    The Rm||Cmax problem consists in allocating a set of tasks to m agents in order to minimize the makespan of the allocation, i.e. the execution time of all the tasks. This problem is known to be NP-hard as soon as the tasks are allocated to two or more agents (m ≄ 2). In addition, it is often assumed that the cost of a task is accurately estimated for an agent and that this cost does not change during the execution of tasks. In this thesis, I propose a decentralized and dynamic approach to improve the allocation of tasks. Thus, from an initial allocation and while they are executing tasks, collaborative agents initiate multiple auctions to reallocate the remaining tasks to be performed. These reallocations are socially rational, i.e. an agent agrees to take on a task initially allocated to another agent if the delegation of this task benefits to the entire system by decreasing the makespan. In addition, the dynamism of the process makes it possible to improve an allocation despite an inaccurate cost function and despite the variations of performance that can occur during the execution of tasks.This thesis provides a formal framework for multi-agent modeling and multi-agent resolution of a located tasks reallocation problem. In such a problem, the locality of the resources required to perform a task affects its cost for each agent of the system. From this framework, I present the interaction protocol used by the agents and I propose several strategies to ensure that the choices of agents have the greatest impact on the makespan of the current allocation.In the applicative context of this thesis, I propose to use this tasks reallocation process to improve the MapReduce design pattern. Widely used for the distributed processing of massive data, MapReduce has biases that the dynamic tasks reallocation process can help to counter. I implemented a distributed prototype that fits into the formal framework and implements the MapReduce design pattern. Thanks to this prototype, I am able to evaluate the effectiveness of the reallocation process and the impact of the different agent strategies.Le problĂšme Rm||Cmax consiste Ă  allouer un ensemble de tĂąches Ă  m agents de sorte Ă  minimiser le makespan de l’allocation, c’est-Ă -dire le temps d’exĂ©cution de l’ensemble des tĂąches. Ce problĂšme est connu pour ĂȘtre NP-dur dĂšs que les tĂąches sont allouĂ©es Ă  deux agents ou plus (m ≄ 2). De plus, il est souvent admis que le coĂ»t d’une tĂąche est prĂ©cisĂ©ment estimĂ© pour un agent et que ce coĂ»t ne varie pas au cours de l’exĂ©cution des tĂąches. Dans cette thĂšse, je propose une approche dĂ©centralisĂ©e et dynamique pour l’amĂ©lioration d’une allocation de tĂąches. Ainsi, Ă  partir d’une allocation initiale et pendant qu’ils exĂ©cutent les tĂąches, les agents collaboratifs initient de multiples enchĂšres pour rĂ©allouer les tĂąches qui restent Ă  exĂ©cuter. Ces rĂ©allocations sont socialement rationnelles, c’est-Ă - dire qu’un agent accepte de prendre en charge une tĂąche initialement allouĂ©e Ă  un autre agent si la dĂ©lĂ©gation de cette tĂąche bĂ©nĂ©ficie Ă  l’ensemble du systĂšme en faisant dĂ©croĂźtre le makespan. De plus, le dynamisme du procĂ©dĂ© permet d’amĂ©liorer une allocation malgrĂ© une fonction de coĂ»t peu prĂ©cise et malgrĂ© les variations de performances qui peuvent survenir lors de l’exĂ©cution des tĂąches.Cette thĂšse offre un cadre formel pour la modĂ©lisation et la rĂ©solution multi-agents d’un problĂšme de rĂ©allocation de tĂąches situĂ©es. Dans un tel problĂšme, la localitĂ© des ressources nĂ©cessaires Ă  l’exĂ©cution d’une tĂąche influe sur son coĂ»t pour chaque agent du systĂšme. À partir de ce cadre, je prĂ©sente le protocole d’interaction des agents et je propose plusieurs stratĂ©gies pour que les choix des agents aient le plus d’impact sur le makespan de l’allocation courante.Dans le cadre applicatif de cette thĂšse, je propose d’utiliser ce processus de rĂ©allocation de tĂąches pour amĂ©liorer le patron de conception MapReduce. TrĂšs utilisĂ© pour le traitement distribuĂ© de donnĂ©es massives, MapReduce possĂšde nĂ©anmoins des biais que la rĂ©allocation dynamique des tĂąches peut aider Ă  contrer. J’ai donc implĂ©mentĂ© un prototype distribuĂ© qui s’inscrit dans le cadre formel et implĂ©mente le patron de conception MapReduce. GrĂące Ă  ce prototype, je suis en mesure d’évaluer l’apport du processus de rĂ©allocation et l’impact des diffĂ©rentes stratĂ©gies d’agent

    Multigram scale syntheses of first and second generation of trifluoromethanesulfenamide reagents

    No full text
    International audienceTrifluoromethanesulfenamide reagents constitute a family of very efficient reagents to trifluoromethylthiolate various molecules. Optimized syntheses have been developed to easily obtain, in a reproducible manner, large quantities of these reagents, with good overall yields. Up to 84 g have already been obtained, at a reasonable cost

    Fair multi-agent task allocation for large datasets analysis

    No full text
    International audienceMapReduce is a design pattern for processing large datasets distributed on a cluster. Its performances are linked to the data structure and the runtime environment. Indeed, data skew can yield an unfair task allocation, but even when the initial allocation produced by the partition function is well balanced, an unfair allocation can occur during the reduce phase due to the heterogeneous performance of nodes. For these reasons, we propose an adaptive multi-agent system. In our approach, the reducer agents interact during the job and the task reallocation is based on negotiation in order to decrease the workload of the most loaded reducer and so the runtime. In this paper, we propose and evaluate two negotiation strategies. Finally, we experiment our multi-agent system with real-world datasets over heterogeneous runtime environment
    corecore