6,728 research outputs found

    Chromatographic test facility. Analysis and design of a capsule landing system and surface vehicle control system for Mars exploration

    Get PDF
    Test facility to verify design concepts and mathematical models of chromatograph for atmospheric composition analysis of Mar

    SUPERSYMMETRY REACH OF AN UPGRADED TEVATRON COLLIDER

    Get PDF
    We examine the capability of a s=2\sqrt{s}=2 TeV Tevatron ppˉp\bar p collider to discover supersymmetry, given a luminosity upgrade to amass 25 fb125\ fb^{-1} of data. We compare with the corresponding reach of the Tevatron Main Injector (1 fb11\ fb^{-1} of data). Working within the framework of minimal supergravity with gauge coupling unification and radiative electroweak symmetry breaking, we first calculate the regions of parameter space accessible via the clean trilepton signal from \tw_1\tz_2\to 3\ell +\eslt production, with detailed event generation of both signal and major physics backgrounds. The trilepton signal can allow equivalent gluino masses of up to mtg600700m_{\tg}\sim 600-700 GeV to be probed if m0m_0 is small. If m0m_0 is large, then mtg500m_{\tg}\sim 500 GeV can be probed for μ0\mu 0 and large values of m0m_0, the rate for \tz_2\to\tz_1\ell\bar{\ell} is suppressed by interference effects, and there is {\it no} reach in this channel. We also examine regions where the signal from \tw_1\overline{\tw_1}\to \ell\bar{\ell}+\eslt is detectable. Although this signal is background limited, it is observable in some regions where the clean trilepton signal is too small. Finally, the signal \tw_1\tz_2\to jets+\ell\bar{\ell} +\eslt can confirm the clean trilepton signal in a substantial subset of the parameter space where the trilepton signal can be seen. We note that although the clean trilepton signal may allow Tevatron experiments to identify signals in regions of parameter space beyond the reach of LEP II, the dilepton channels generally probe much the same region as LEP II.Comment: 19 page REVTEX file; a uuencoded PS file with PS figures is available via anonymous ftp at ftp://hep.fsu.edu/preprints/baer/FSUHEP950301.u

    Trileptons from Chargino-Neutralino Production at the CERN Large Hadron Collider

    Full text link
    We study direct production of charginos and neutralinos at the CERN Large Hadron Collider. We simulate all channels of chargino and neutralino production using ISAJET 7.07. The best mode for observing such processes appears to be pp\to\tw_1\tz_2\to 3\ell +\eslt. We evaluate signal expectations and background levels, and suggest cuts to optimize the signal. The trilepton mode should be viable provided m_{\tg}\alt 500-600~GeV; above this mass, the decay modes \tz_2\to\tz_1 Z and \tz_2\to H_{\ell}\tz_1 become dominant, spoiling the signal. In the first case, the leptonic branching fraction for ZZ decay is small and additional background from WZWZ is present, while in the second case, the trilepton signal is essentially absent. For smaller values of mtgm_{\tg}, the trilepton signal should be visible above background, especially if μmtg|\mu|\simeq m_{\tg} and m_{\tell}\ll m_{\tq}, in which case the leptonic decays of \tz_2 are enhanced. Distributions in dilepton mass m(ˉ)m(\ell\bar{\ell}) can yield direct information on neutralino masses due to the distribution cutoff at m_{\tz_2}-m_{\tz_1}. Other distributions that may lead to an additional constraint amongst the chargino and neutralino masses are also examined.Comment: preprint nos. FSU-HEP-940310 and UH-511-786-94, 13 pages (REVTEX) plus 7 uuencoded figures attache

    Probing Minimal Supergravity at the CERN LHC for Large tanβ\tan\beta

    Get PDF
    For large values of the minimal supergravity model parameter tanβ\tan\beta, the tau lepton and the bottom quark Yukawa couplings become large, leading to reduced masses of τ\tau-sleptons and bb-squarks relative to their first and second generation counterparts, and to enhanced decays of charginos and neutralinos to τ\tau-leptons and bb-quarks. We evaluate the reach of the CERN LHC pppp collider for supersymmetry in the mSUGRA model parameter space. We find that values of mtg15002000m_{\tg}\sim 1500-2000 GeV can be probed with just 10 fb1^{-1} of integrated luminosity for tanβ\tan\beta values as high as 45, so that mSUGRA cannot escape the scrutiny of LHC experiments by virtue of having a large value of tanβ\tan\beta. We also perform a case study of an mSUGRA model at tanβ=45\tan\beta =45 where \tz_2\to \tau\ttau_1 and \tw_1\to \ttau_1\nu_\tau with 100\sim 100% branching fraction. In this case, at least within our simplistic study, we show that a di-tau mass edge, which determines the value of m_{\tz_2}-m_{\tz_1}, can still be reconstructed. This information can be used as a starting point for reconstructing SUSY cascade decays on an event-by-event basis, and can provide a strong constraint in determining the underlying model parameters. Finally, we show that for large tanβ\tan\beta there can be an observable excess of τ\tau leptons, and argue that τ\tau signals might serve to provide new information about the underlying model framework.Comment: 22 page REVTEX file including 8 figure

    Ground-state degeneracies leave recognizable topological scars in the one-particle density

    Full text link
    In Kohn-Sham density functional theory (KS-DFT) a fictitious system of non-interacting particles is constructed having the same ground-state (GS) density as the physical system of interest. A fundamental open question in DFT concerns the ability of an exact KS calculation to spot and characterize the GS degeneracies in the physical system. In this article we provide theoretical evidence suggesting that the GS density, as a function of position on a 2D manifold of parameters affecting the external potential, is "topologically scarred" in a distinct way by degeneracies. These scars are sufficiently detailed to enable determination of the positions of degeneracies and even the associated Berry phases. We conclude that an exact KS calculation can spot and characterize the degeneracies of the physical system

    The Reach of the Fermilab Tevatron and CERN LHC for Gaugino Mediated SUSY Breaking Models

    Get PDF
    In supersymmetric models with gaugino mediated SUSY breaking (inoMSB), it is assumed that SUSY breaking on a hidden brane is communicated to the visible brane via gauge superfields which propagate in the bulk. This leads to GUT models where the common gaugino mass m1/2m_{1/2} is the only soft SUSY breaking term to receive contributions at tree level. To obtain a viable phenomenology, it is assumed that the gaugino mass is induced at some scale McM_c beyond the GUT scale, and that additional renormalization group running takes place between McM_c and MGUTM_{GUT} as in a SUSY GUT. We assume an SU(5) SUSY GUT above the GUT scale, and compute the SUSY particle spectrum expected in models with inoMSB. We use the Monte Carlo program ISAJET to simulate signals within the inoMSB model, and compute the SUSY reach including cuts and triggers approriate to Fermilab Tevatron and CERN LHC experiments. We find no reach for SUSY by the Tevatron collider in the trilepton channel. %either with or without %identified tau leptons. At the CERN LHC, values of m1/2=1000m_{1/2}=1000 (1160) GeV can be probed with 10 (100) fb1^{-1} of integrated luminosity, corresponding to a reach in terms of mtgm_{\tg} of 2150 (2500) GeV. The inoMSB model and mSUGRA can likely only be differentiated at a linear e+ee^+e^- collider with sufficient energy to produce sleptons and charginos.Comment: 17 page revtex file with 9 PS figure

    Reach of the Fermilab Tevatron for minimal supergravity in the region of large scalar masses

    Full text link
    The reach of the Fermilab Tevatron for supersymmetric matter has been calculated in the framework of the minimal supergravity model in the clean trilepton channel. Previous analyses of this channel were restricted to scalar masses m_0<= 1 TeV. We extend the analysis to large values of scalar masses m_0\sim 3.5 TeV. This includes the compelling hyperbolic branch/focus point (HB/FP) region, where the superpotential \mu parameter becomes small. In this region, assuming a 5\sigma (3\sigma) signal with 10 (25) fb^{-1} of integrated luminosity, the Tevatron reach in the trilepton channel extends up to m_{1/2}\sim 190 (270) GeV independent of \tan\beta . This corresponds to a reach in terms of the gluino mass of m_{\tg}\sim 575 (750) GeV.Comment: 11 page latex file including 6 EPS figures; several typos corrected and references adde

    Hidden SUSY at the LHC: the light higgsino-world scenario and the role of a lepton collider

    Get PDF
    While the SUSY flavor, CP and gravitino problems seem to favor a very heavy spectrum of matter scalars, fine-tuning in the electroweak sector prefers low values of superpotential mass \mu. In the limit of low \mu, the two lightest neutralinos and light chargino are higgsino-like. The light charginos and neutralinos may have large production cross sections at LHC, but since they are nearly mass degenerate, there is only small energy release in three-body sparticle decays. Possible dilepton and trilepton signatures are difficult to observe after mild cuts due to the very soft p_T spectrum of the final state isolated leptons. Thus, the higgsino-world scenario can easily elude standard SUSY searches at the LHC. It should motivate experimental searches to focus on dimuon and trimuon production at the very lowest p_T(\mu) values possible. If the neutralino relic abundance is enhanced via non-standard cosmological dark matter production, then there exist excellent prospects for direct or indirect detection of higgsino-like WIMPs. While the higgsino-world scenario may easily hide from LHC SUSY searches, a linear e^+e^- collider or a muon collider operating in the \sqrt{s}\sim 0.5-1 TeV range would be able to easily access the chargino and neutralino pair production reactions.Comment: 20 pages including 12 .eps figure

    SIGNALS FOR MINIMAL SUPERGRAVITY AT THE CERN LARGE HADRON COLLIDER: MULTI-JET PLUS MISSING ENERGY CHANNEL,

    Full text link
    We use ISAJET to perform a detailed study of the missing transverse energy \eslt plus multi-jet signal expected from superparticle production at the CERN LHC. Our analysis is performed within the framework of the minimal supergravity model with gauge coupling unification and radiative electroweak symmetry breaking. We delineate the region of parameter space where the \eslt supersymmetry signal should be observable at the LHC and compare it to the regions explorable via searches for sleptons and for chargino/neutralino production. We confirm that, given a data sample of 10~\fb^{-1}, mtg1300m_{\tg}\sim 1300 GeV can be explored if m_{\tq}\gg m_{\tg}, while mtg2000m_{\tg}\sim 2000 GeV can be probed if m_{\tq}\simeq m_{\tg}. We further examine what information can be gleaned from scrutinizing this event sample. For instance, the multi-jet multiplicity yields information on whether squark production makes a significant contribution to the observed \eslt sample. Furthermore, reconstructing hemispheric masses may yield a measure of mtgm_{\tg} to 1525%\sim 15-25\%. Finally, for favourable ranges of parameters, by reconstructing masses of tagged bbˉb\bar{b} jet pairs, it may be possible to detect Higgs bosons produced via sparticle cascade decay chains.Comment: 22 pages (REVTEX); a PS text file (etmiss.ps) and 12 figures (etlhc.uu or etlhc.ps) can be obtained via anonymous ftp at ftp://hep.fsu.edu/anonymous.bae

    Testing the gaugino AMSB model at the Tevatron via slepton pair production

    Full text link
    Gaugino AMSB models-- wherein scalar and trilinear soft SUSY breaking terms are suppressed at the GUT scale while gaugino masses adopt the AMSB form-- yield a characteristic SUSY particle mass spectrum with light sleptons along with a nearly degenerate wino-like lightest neutralino and quasi-stable chargino. The left- sleptons and sneutrinos can be pair produced at sufficiently high rates to yield observable signals at the Fermilab Tevatron. We calculate the rate for isolated single and dilepton plus missing energy signals, along with the presence of one or two highly ionizing chargino tracks. We find that Tevatron experiments should be able to probe gravitino masses into the ~55 TeV range for inoAMSB models, which corresponds to a reach in gluino mass of over 1100 GeV.Comment: 14 pages including 6 .eps figure
    corecore