439 research outputs found

    Neural Spectro-polarimetric Fields

    Full text link
    Modeling the spatial radiance distribution of light rays in a scene has been extensively explored for applications, including view synthesis. Spectrum and polarization, the wave properties of light, are often neglected due to their integration into three RGB spectral bands and their non-perceptibility to human vision. Despite this, these properties encompass substantial material and geometric information about a scene. In this work, we propose to model spectro-polarimetric fields, the spatial Stokes-vector distribution of any light ray at an arbitrary wavelength. We present Neural Spectro-polarimetric Fields (NeSpoF), a neural representation that models the physically-valid Stokes vector at given continuous variables of position, direction, and wavelength. NeSpoF manages inherently noisy raw measurements, showcases memory efficiency, and preserves physically vital signals, factors that are crucial for representing the high-dimensional signal of a spectro-polarimetric field. To validate NeSpoF, we introduce the first multi-view hyperspectral-polarimetric image dataset, comprised of both synthetic and real-world scenes. These were captured using our compact hyperspectral-polarimetric imaging system, which has been calibrated for robustness against system imperfections. We demonstrate the capabilities of NeSpoF on diverse scenes

    UGPNet: Universal Generative Prior for Image Restoration

    Full text link
    Recent image restoration methods can be broadly categorized into two classes: (1) regression methods that recover the rough structure of the original image without synthesizing high-frequency details and (2) generative methods that synthesize perceptually-realistic high-frequency details even though the resulting image deviates from the original structure of the input. While both directions have been extensively studied in isolation, merging their benefits with a single framework has been rarely studied. In this paper, we propose UGPNet, a universal image restoration framework that can effectively achieve the benefits of both approaches by simply adopting a pair of an existing regression model and a generative model. UGPNet first restores the image structure of a degraded input using a regression model and synthesizes a perceptually-realistic image with a generative model on top of the regressed output. UGPNet then combines the regressed output and the synthesized output, resulting in a final result that faithfully reconstructs the structure of the original image in addition to perceptually-realistic textures. Our extensive experiments on deblurring, denoising, and super-resolution demonstrate that UGPNet can successfully exploit both regression and generative methods for high-fidelity image restoration.Comment: Accepted to WACV 202

    A Review of Current Clinical Applications of Three-Dimensional Printing in Spine Surgery

    Get PDF
    Three-dimensional (3D) printing is a transformative technology with a potentially wide range of applications in the field of orthopaedic spine surgery. This article aims to review the current applications, limitations, and future developments of 3D printing technology in orthopaedic spine surgery. Current preoperative applications of 3D printing include construction of complex 3D anatomic models for improved visual understanding, preoperative surgical planning, and surgical simulations for resident education. Intraoperatively, 3D printers have been successfully used in surgical guidance systems and in the creation of patient specific implantable devices. Furthermore, 3D printing is revolutionizing the field of regenerative medicine and tissue engineering, allowing construction of biocompatible scaffolds suitable for cell growth and vasculature. Advances in printing technology and evidence of positive clinical outcomes are needed before there is an expansion of 3D printing applied to the clinical setting

    Detecting Bladder Biomarkers for Closed-Loop Neuromodulation: A Technological Review

    Get PDF
    Neuromodulation was introduced for patients with poor outcomes from the existing traditional treatment approaches. It is well-established as an alternative, novel treatment option for voiding dysfunction. The current system of neuromodulation uses an open-loop system that only delivers continuous stimulation without considering the patient’s state changes. Though the conventional open-loop system has shown positive clinical results, it can cause problems such as decreased efficacy over time due to neural habituation, higher risk of tissue damage, and lower battery life. Therefore, there is a need for a closed-loop system to overcome the disadvantages of existing systems. The closed-loop neuromodulation includes a system to monitor and stimulate micturition reflex pathways from the lower urinary tract, as well as the central nervous system. In this paper, we reviewed the current technological status to measure biomarker for closed-loop neuromodulation systems for voiding dysfunction

    Eosinophilic Otitis Media: CT and MRI Findings and Literature Review

    Get PDF
    Eosinophilic otitis media (EOM) is a relatively rare, intractable, middle ear disease with extremely viscous mucoid effusion containing eosinophils. EOM is associated with adult bronchial asthma and nasal allergies. Conventional treatments for otitis media with effusion (OME) or for chronic otitis media (COM), like tympanoplasty or mastoidectomy, when performed for the treatment of EOM, can induce severe complications such as deafness. Therefore, it should be differentiated from the usual type of OME or COM. To our knowledge, the clinical and imaging findings of EOM of temporal bone are not well-known to radiologists. We report here the CT and MRI findings of two EOM cases and review the clinical and histopathologic findings of this recently described disease entity

    Sensitivity Analysis and Optimization of a Radiative Transfer Numerical Model for Turbid Lake Water

    Get PDF
    Remote sensing can detect and map algal blooms. The HydroLight (Sequoia Scientific Inc., Bellevue, Washington, DC, USA) model generates the reflectance profiles of various water bodies. However, the influence of model parameters has rarely been investigated for inland water. Moreover, the simulation time of the HydroLight model increases as the amount of input data increases, which limits the practicality of the HydroLight model. This study developed a graphical user interface (GUI) software for the sensitivity analysis of the HydroLight model through multiple executions. The GUI software stably performed parameter sensitivity analysis and substantially reduced the simulation time by up to 92%. The GUI software results for lake water show that the backscattering ratio was the most important parameter for estimating vertical reflectance profiles. Based on the sensitivity analysis results, parameter calibration of the HydroLight model was performed. The reflectance profiles obtained using the optimized parameters agreed with observed profiles, with R-2 values of over 0.98. Thus, a strong relationship between the backscattering coefficient and the observed cyanobacteria genera cells was identified

    Central Venous Stenosis Caused by Traction of the Innominate Vein due to a Tuberculosis-Destroyed Lung

    Get PDF
    We report a case of central venous stenosis due to a structural deformity caused by a tuberculosis-destroyed lung in a 65-year-old woman. The patient presented with left facial edema. She had a history of pulmonary tuberculosis, and the chest X-ray revealed a collapsed left lung. Angiography showed leftward deviation of the innominate vein leading to kinking and stenosis of the internal jugular vein. Stent insertion improved her facial edema

    Surgical treatment and long-term outcomes of low-grade myofibroblastic sarcoma: a single-center case series of 15 patients

    Get PDF
    Abstract Background Low-grade myofibroblastic sarcoma (LGMS) is a poorly studied, rare, soft tissue sarcoma. LGMS is characterized by a low malignancy potential, tendency for local recurrence, and low likelihood of distant metastases. However, no studies have reported on the surgical treatment method and its long-term outcomes. Methods We included all patients treated for LGMS at our institution between March 2010 and March 2021. Medical charts were retrospectively reviewed to collect demographic information, as well as information about the clinical course, tumor characteristics, and outcomes. Statistical analysis was performed to identify the factors associated with the recurrence rate. Results Fifteen patients who underwent surgical treatment were enrolled in this study. There were seven cases in the upper extremities, four in the trunk area, three in the lower extremities, and one in the head and neck area. There were no metastatic cases and two cases of local recurrence. Conclusions The incidence of LGMS in the extremities or trunk may be higher than expected based on the current literature. Univariate analysis showed that local tissue invasion and surgical method could be associated with local recurrence. Although further large studies are needed to establish risk factors of local recurrence or extent of resection margins, based on our study, wide local excision under the proper diagnosis is the most important treatment

    Computational spatiotemporal analysis identifies WAVE2 and cofilin as joint regulators of costimulation-mediated T cell actin dynamics

    Get PDF
    Fluorescence microscopy is one of the most important tools in cell biology research and it provides spatial and temporal information to investigate regulatory systems inside cells. This technique can generate data in the form of signal intensities at thousands of positions resolved inside individual live cells; however, given extensive cell-to-cell variation, methods do not currently exist to assemble these data into three- or four-dimensional maps of protein concentration that can be compared across different cells and conditions. Here, we have developed one such method and applied it to investigate actin dynamics in T cell activation. Antigen recognition in T cells by the T cell receptor (TCR) is amplified by engagement of the costimulatory receptor CD28 and we have determined how CD28 modulates actin dynamics. We imaged actin and eight core actin regulators under conditions where CD28 in the context of a strong TCR signal was engaged or blocked to yield over a thousand movies. Our computational analysis identified diminished recruitment of the activator of actin nucleation WAVE2 and the actin severing protein cofilin to F-actin as the dominant difference upon costimulation blockade. Reconstitution of WAVE2 and cofilin activity restored the defect in actin signaling dynamics upon costimulation blockade. Thus we have developed and validated an approach to quantify protein distributions in time and space for analysis of complex regulatory systems
    corecore