81 research outputs found

    Shrike predation on the lizard Mesalina adramitana in Qatar; a review of reported reptile and amphibian prey

    Get PDF
    We report, for the first time, evidence of predation by a shrike (Lanius sp.) on the lizard Mesalina adramitana. This is the first record of predation by shrikes on lizards in Qatar. Whilst we did not directly observe the event, the presence of shrikes in the area and the method of impalement indicate shrikes as the predator. The lizard was found freshly impaled on a palm tree (Phoenix dactylifera), at 150 cm above ground. Bird species of the genus Lanius are well-known predators of lizards, and in arid environments reptiles are likely common prey for these birds. We provide a review of literature concerning predatory events by shrikes on reptiles and amphibians. We suggest inspection of shrubs for animals impaled by shrikes can improve biodiversity inventories, complementing other commonly used methods

    Regulatory T Cells in the Pathogenesis and Healing of Chronic Human Dermal Leishmaniasis Caused by Leishmania (Viannia) Species

    Get PDF
    The immune inflammatory response is a double edged sword. During infectious diseases, regulatory T cells can prevent eradication of the pathogen but can also limit inflammation and tissue damage. We investigated the role of regulatory T cells in chronic dermal leishmaniasis caused by species of the parasite Leishmania that are endemic in South and Central America. We found that although individuals with chronic lesions have increased regulatory T cells in their blood and at skin sites where immune responses to Leishmania were taking place compared to infected individuals who do not develop disease, their capacity to control the inflammatory response to Leishmania was inferior. However, healing of chronic lesions at the end of treatment was accompanied by an increase in the number and capacity of regulatory T cells to inhibit the function of effector T cells that mediate the inflammatory response. Different subsets of regulatory T cells, defined by the expression of molecular markers, were identified during chronic disease and healing, supporting the participation of distinct regulatory T cells in the development of disease and the control of inflammation during the healing response. Immunotherapeutic strategies may allow these regulatory T cell subsets to be mobilized or mitigated to achieve healing

    CD4(+)CD25(+)FOXP3(+) Regulatory T Cells Suppress Anti-Tumor Immune Responses in Patients with Colorectal Cancer

    Get PDF
    BACKGROUND: A wealth of evidence obtained using mouse models indicates that CD4(+)CD25(+)FOXP3(+) regulatory T cells (Treg) maintain peripheral tolerance to self-antigens and also inhibit anti-tumor immune responses. To date there is limited information about CD4(+) T cell responses in patients with colorectal cancer (CRC). We set out to measure T cell responses to a tumor-associated antigen and examine whether Treg impinge on those anti-tumor immune responses in CRC patients. METHODOLOGY AND PRINCIPAL FINDINGS: Treg were identified and characterized as CD4(+)CD25(+)FOXP3(+) using flow cytometry. An increased frequency of Treg was demonstrated in both peripheral blood and mesenteric lymph nodes of patients with colorectal cancer (CRC) compared with either healthy controls or patients with inflammatory bowel disease (IBD). Depletion of Treg from peripheral blood mononuclear cells (PBMC) of CRC patients unmasked CD4(+) T cell responses, as observed by IFNγ release, to the tumor associated antigen 5T4, whereas no effect was observed in a healthy age-matched control group. CONCLUSIONS/SIGNIFICANCE: Collectively, these data demonstrate that Treg capable of inhibiting tumor associated antigen-specific immune responses are enriched in patients with CRC. These results support a rationale for manipulating Treg to enhance cancer immunotherapy

    Modulation of T Cell Function by Combination of Epitope Specific and Low Dose Anticytokine Therapy Controls Autoimmune Arthritis

    Get PDF
    Innate and adaptive immunity contribute to the pathogenesis of autoimmune arthritis by generating and maintaining inflammation, which leads to tissue damage. Current biological therapies target innate immunity, eminently by interfering with single pro-inflammatory cytokine pathways. This approach has shown excellent efficacy in a good proportion of patients with Rheumatoid Arthritis (RA), but is limited by cost and side effects. Adaptive immunity, particularly T cells with a regulatory function, plays a fundamental role in controlling inflammation in physiologic conditions. A growing body of evidence suggests that modulation of T cell function is impaired in autoimmunity. Restoration of such function could be of significant therapeutic value. We have recently demonstrated that epitope-specific therapy can restore modulation of T cell function in RA patients. Here, we tested the hypothesis that a combination of anti-cytokine and epitope-specific immunotherapy may facilitate the control of autoimmune inflammation by generating active T cell regulation. This novel combination of mucosal tolerization to a pathogenic T cell epitope and single low dose anti-TNFα was as therapeutically effective as full dose anti-TNFα treatment. Analysis of the underlying immunological mechanisms showed induction of T cell immune deviation

    Overexpression of cathepsin K during silica-induced lung fibrosis and control by TGF-β

    Get PDF
    BACKGROUND: Lung fibrosis is characterized by tissue remodeling resulting from an imbalance between synthesis and degradation of extracellular organic matrices. To examine whether cathepsin(s) (Cat) are important in the development of pulmonary fibrosis, we assessed the expression of four Cat known for their collagenolytic activity in a model of silica-induced lung fibrosis. METHODS: Different strains of mice were transorally instilled with 2.5 mg crystalline silica or other particles. Cat expression (Cat K, S, L and B) was quantified in lung tissue and isolated pulmonary cells by quantitative RT-PCR. In vitro, we assessed the effect of different cytokines, involved in lung inflammatory and fibrotic responses, on the expression of Cat K by alveolar macrophages and fibroblasts. RESULTS: In lung tissue, Cat K transcript was the most strongly upregulated in response to silica, and this upregulation was intimately related to the fibrotic process. In mouse strains known for their differential response to silica, we showed that the level of Cat K expression following silica treatment was inversely related to the level of TGF-β expression and the susceptibility of these strains to develop fibrosis. Pulmonary macrophages and fibroblasts were identified as Cat K overproducing cells in the lung of silicotic mice. In vitro, Cat K was downregulated in mouse and human lung fibroblasts by the profibrotic growth factor TGF-β1. CONCLUSION: Altogether, these data suggest that while Cat K may contribute to control lung fibrosis, TGF-β appears to limit its overexpression in response to silica particles

    Characterization of Protective Human CD4+CD25+ FOXP3+ Regulatory T Cells Generated with IL-2, TGF-β and Retinoic Acid

    Get PDF
    BACKGROUND: Protective CD4+CD25+ regulatory T cells bearing the Forkhead Foxp3 transcription factor can now be divided into three subsets: Endogenous thymus-derived cells, those induced in the periphery, and another subset induced ex-vivo with pharmacological amounts of IL-2 and TGF-β. Unfortunately, endogenous CD4+CD25+ regulatory T cells are unstable and can be converted to effector cells by pro-inflammatory cytokines. Although protective Foxp3+CD4+CD25+ cells resistant to proinflammatory cytokines have been generated in mice, in humans this result has been elusive. Our objective, therefore, was to induce human naïve CD4+ cells to become stable, functional CD25+ Foxp3+ regulatory cells that were also resistant to the inhibitory effects of proinflammatory cytokines. METHODOLOGY/PRINCIPAL FINDINGS: The addition of the vitamin A metabolite, all-trans retinoic acid (atRA) to human naïve CD4+ cells suboptimally activated with IL-2 and TGF-β enhanced and stabilized FOXP3 expression, and accelerated their maturation to protective regulatory T cells. AtRA, by itself, accelerated conversion of naïve to mature cells but did not induce FOXP3 or suppressive activity. The combination of atRA and TGF-β enabled CD4+CD45RA+ cells to express a phenotype and trafficking receptors similar to natural Tregs. AtRA/TGF-β-induced CD4+ regs were anergic and low producers of IL-2. They had potent in vitro suppressive activity and protected immunodeficient mice from a human-anti-mouse GVHD as well as expanded endogenous Tregs. However, treatment of endogenous Tregs with IL-1β and IL-6 decreased FOXP3 expression and diminished their protective effects in vivo while atRA-induced iTregs were resistant to these inhibitory effects. CONCLUSIONS/SIGNIFICANCE: We have developed a methodology that induces human CD4(+) cells to rapidly become stable, fully functional suppressor cells that are also resistant to proinflammatory cytokines. This methodology offers a practical novel strategy to treat human autoimmune diseases and prevent allograft rejection without the use of agents that kill cells or interfere with signaling pathways

    Regulatory T Cells Phenotype in Different Clinical Forms of Chagas' Disease

    Get PDF
    CD25High CD4+ regulatory T cells (Treg cells) have been described as key players in immune regulation, preventing infection-induced immune pathology and limiting collateral tissue damage caused by vigorous anti-parasite immune response. In this review, we summarize data obtained by the investigation of Treg cells in different clinical forms of Chagas' disease. Ex vivo immunophenotyping of whole blood, as well as after stimulation with Trypanosoma cruzi antigens, demonstrated that individuals in the indeterminate (IND) clinical form of the disease have a higher frequency of Treg cells, suggesting that an expansion of those cells could be beneficial, possibly by limiting strong cytotoxic activity and tissue damage. Additional analysis demonstrated an activated status of Treg cells based on low expression of CD62L and high expression of CD40L, CD69, and CD54 by cells from all chagasic patients after T. cruzi antigenic stimulation. Moreover, there was an increase in the frequency of the population of Foxp3+ CD25HighCD4+ cells that was also IL-10+ in the IND group, whereas in the cardiac (CARD) group, there was an increase in the percentage of Foxp3+ CD25High CD4+ cells that expressed CTLA-4. These data suggest that IL-10 produced by Treg cells is effective in controlling disease development in IND patients. However, in CARD patients, the same regulatory mechanism, mediated by IL-10 and CTLA-4 expression is unlikely to be sufficient to control the progression of the disease. These data suggest that Treg cells may play an important role in controlling the immune response in Chagas' disease and the balance between regulatory and effector T cells may be important for the progression and development of the disease. Additional detailed analysis of the mechanisms on how these cells are activated and exert their function will certainly give insights for the rational design of procedure to achieve the appropriate balance between protection and pathology during parasite infections

    In vivo Expansion of Naïve CD4+CD25high FOXP3+ Regulatory T Cells in Patients with Colorectal Carcinoma after IL-2 Administration

    Get PDF
    Regulatory T cells (Treg cells) are increased in context of malignancies and their expansion can be correlated with higher disease burden and decreased survival. Initially, interleukin 2 (IL-2) has been used as T-cell growth factor in clinical vaccination trials. In murine models, however, a role of IL-2 in development, differentiation, homeostasis, and function of Treg cells was established. In IL-2 treated cancer patients a further Treg-cell expansion was described, yet, the mechanism of expansion is still elusive. Here we report that functional Treg cells of a naïve phenotype - as determined by CCR7 and CD45RA expression - are significantly expanded in colorectal cancer patients. Treatment of 15 UICC stage IV colorectal cancer patients with IL-2 in a phase I/II peptide vaccination trial further enlarges the already increased naïve Treg-cell pool. Higher frequencies of T-cell receptor excision circles in naïve Treg cells indicate IL-2 dependent thymic generation of naïve Treg cells as a mechanism leading to increased frequencies of Treg cells post IL-2 treatment in cancer patients. This finding could be confirmed in naïve murine Treg cells after IL-2 administration. These results point to a more complex regulation of Treg cells in context of IL-2 administration. Future strategies therefore might aim at combining IL-2 therapy with novel strategies to circumvent expansion and differentiation of naïve Treg cells
    corecore