127 research outputs found

    Lysophosphatides enhance superoxide responses of stimulated human neutrophils

    Full text link
    Human neutrophils which are pretreated with subtoxic concentrations of a variety of lysophosphatides (lysophosphatidytcholine, lysophosphatidylcholine oleoyl, lysophosphatidylcholine myrioyl, lysophosphatidylcholine stearoyl, lysophosphatidylcholine gamma- O -hexadecyl, lysophosphatidylinositol, and lysophosphatidylglycerol) act synergistically with neutrophil agonists phorbol myristate acetate, immune complexes, poly- L -histidine, phytohemagglutinin, and N -formyl methionyl-leucyl-phenyalanine to cause enhanced generation of superoxide (O 2 − ). None of the lyso compounds by themselves caused generation of O 2 − . The lyso compounds strongly bound to the neutrophils and could not be washed away. All of the lyso compounds that collaborated with agonists to stimulate O 2 − generation were hemolytic for human red blood cells. On the other hand, lyso compounds that were nonhemolytic for red blood cells (lysophosphatidylcholine caproate, lysophosphatidylcholine decanoyl, lysophosphatidylethanolamine, lysophosphatidylserine) failed to collaborate with agonists to generate synergistic amounts of O 2 − . However, in the presence of cytochalasin B, both lysophosphatidyiethanolamine and lysophosphatidylserine also markedly enhanced O 2 − generation induced by immune complexes. O 2 − generation was also very markedly enhanced when substimulatory amounts of arachidonic acid or eicosapentanoic acid were added to PMNs in the presence of a variety of agonists. On the other hand, neither phospholipase C, streptolysin S (highly hemolytic), phospholipase A 2 , phosphatidylcholine, nor phosphatidylcholine dipalmitoyl (all nonhemolytic) had the capacity to synergize with any of the agonists tested to generate enhanced amounts of O 2 − . The data suggest that in addition to long-chain fatty acids, only those lyso compounds that possess fatty acids with more than 10 carbons and that are also highly hemolytic can cause enhanced generation of O 2 − in stimulated PMNs.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44499/1/10753_2004_Article_BF00924787.pd

    Reactive oxygen species in phagocytic leukocytes

    Get PDF
    Phagocytic leukocytes consume oxygen and generate reactive oxygen species in response to appropriate stimuli. The phagocyte NADPH oxidase, a multiprotein complex, existing in the dissociated state in resting cells becomes assembled into the functional oxidase complex upon stimulation and then generates superoxide anions. Biochemical aspects of the NADPH oxidase are briefly discussed in this review; however, the major focus relates to the contributions of various modes of microscopy to our understanding of the NADPH oxidase and the cell biology of phagocytic leukocytes

    A Neutrophil Phenotype Model for Extracorporeal Treatment of Sepsis

    Get PDF
    Neutrophils play a central role in eliminating bacterial pathogens, but may also contribute to end-organ damage in sepsis. Interleukin-8 (IL-8), a key modulator of neutrophil function, signals through neutrophil specific surface receptors CXCR-1 and CXCR-2. In this study a mechanistic computational model was used to evaluate and deploy an extracorporeal sepsis treatment which modulates CXCR-1/2 levels. First, a simplified mechanistic computational model of IL-8 mediated activation of CXCR-1/2 receptors was developed, containing 16 ODEs and 43 parameters. Receptor level dynamics and systemic parameters were coupled with multiple neutrophil phenotypes to generate dynamic populations of activated neutrophils which reduce pathogen load, and/or primed neutrophils which cause adverse tissue damage when misdirected. The mathematical model was calibrated using experimental data from baboons administered a two-hour infusion of E coli and followed for a maximum of 28 days. Ensembles of parameters were generated using a Bayesian parallel tempering approach to produce model fits that could recreate experimental outcomes. Stepwise logistic regression identified seven model parameters as key determinants of mortality. Sensitivity analysis showed that parameters controlling the level of killer cell neutrophils affected the overall systemic damage of individuals. To evaluate rescue strategies and provide probabilistic predictions of their impact on mortality, time of onset, duration, and capture efficacy of an extracorporeal device that modulated neutrophil phenotype were explored. Our findings suggest that interventions aiming to modulate phenotypic composition are time sensitive. When introduced between 3–6 hours of infection for a 72 hour duration, the survivor population increased from 31% to 40–80%. Treatment efficacy quickly diminishes if not introduced within 15 hours of infection. Significant harm is possible with treatment durations ranging from 5–24 hours, which may reduce survival to 13%. In severe sepsis, an extracorporeal treatment which modulates CXCR-1/2 levels has therapeutic potential, but also potential for harm. Further development of the computational model will help guide optimal device development and determine which patient populations should be targeted by treatment

    Human phosphoglycolate phosphatase (PGP) E.C.3.1.3.18: Linkage analysis

    No full text
    corecore