18 research outputs found
Exploring the link between pyrethroids exposure and dopaminergic degeneration through morphometric, immunofluorescence, and in-silico approaches: the therapeutic role of chitosan-encapsulated curcumin nanoparticles
Introduction: The synthetic pyrethroid derivative fenpropathrin (FNE), a commonly used insecticide, has been associated with various toxic effects in mammals, particularly neurotoxicity. The study addressed the hallmarks of the pathophysiology of Parkinson's disease upon oral exposure to fenpropathrin (FNE), mainly the alteration of dopaminergic markers, oxidative stress, and molecular docking in rat models. In addition, the protective effect of curcumin-encapsulated chitosan nanoparticles (CRM-Chs-NPs) was also assessed. Methods: In a 60-day trial, 40 male Sprague Dawley rats were divided into 4 groups: Control, CRM-Chs-NPs (curcumin-encapsulated chitosan nanoparticles), FNE (15 mg/kg bw), and FNE + CRM-Chs-NPs. Results: FNE exposure induced reactive oxygen species generation, ATP production disruption, activation of inflammatory and apoptotic pathways, mitochondrial function and dynamics impairment, neurotransmitter level perturbation, and mitophagy promotion in rat brains. Molecular docking analysis revealed that FNE interacts with key binding sites of dopamine synthesis and transport proteins. On the other hand, CRM-Chs-NPs mitigated FNE's toxic effects by enhancing mitochondrial dynamics, antioxidant activity, and ATP production and promoting anti-inflammatory and antiapoptotic responses. Conclusion: In summary, FNE appears to induce dopaminergic degeneration through various mechanisms, and CRM-Chs-NPs emerged as a potential therapeutic intervention for protecting the nervous tissue microenvironment
Chamuangone-enriched rice bran oil ameliorates neurodegeneration in haloperidol-induced Parkinsonian rat model via modulation of neuro-inflammatory mediators and suppression of oxidative stress markers
A natural bioactive compound chamuangone extracted from Thai salad Garcinia cowa leaves exhibited robust medicinal properties, targeting central oxidative stress pathways, and having neuroprotective potential. Chamuangone-enriched rice bran oil (CERBO), with 1.97 mg/mL chamuangone, was obtained through green extraction. The study was designed to evaluate the anti-Parkinson’s activity of CERBO in the haloperidol-induced Parkinsonian rat model. Animals were categorized into six groups as control, disease control and treatment groups. Parkinson’s disease (PD)-like symptoms were induced by administration of haloperidol 1 mg/kg, intraperitoneally; CERBO treatment groups received 2.5, 5, and 7.5 mg/kg orally before the administration of haloperidol for 21 days. Neurobehavioral, biochemical, neurochemical, and histopathological studies along with gene expression analysis were performed at the completion of the study. CERBO markedly recover the motor and non-motor PD-like symptoms in treatment groups dose-dependently. The levels of antioxidant enzymes, such as catalase, superoxide dismutase, reduced glutathione, and glutathione peroxidase, increased, while malondialdehyde levels decreased dose-dependently in CERBO-treated groups. CERBO dose-dependent elevations were observed in neurotransmitters (dopamine, serotonin, and noradrenaline). PD-associated specific biomarker (α-synuclein) decreased dose-dependently with downregulation in messenger RNA expression of neuro-inflammatory mediators (interleukin α, interleukin 1β, and tumor necrosis factor-α). Histopathological studies revealed recovery in neuronal loss, formation of Lewy’s bodies, and neurofibrillary tangles in the treatment groups. It was concluded from the data that CERBO possessed good anti-Parkinson’s activity and could be a novel, safe, and effective remedy for the treatment of PD.peer-reviewe
Exploring the link between pyrethroids exposure and dopaminergic degeneration through morphometric, immunofluorescence, and in-silico approaches: the therapeutic role of chitosan-encapsulated curcumin nanoparticles
Introduction: The synthetic pyrethroid derivative fenpropathrin (FNE), a commonly used insecticide, has been associated with various toxic effects in mammals, particularly neurotoxicity. The study addressed the hallmarks of the pathophysiology of Parkinson’s disease upon oral exposure to fenpropathrin (FNE), mainly the alteration of dopaminergic markers, oxidative stress, and molecular docking in rat models. In addition, the protective effect of curcumin-encapsulated chitosan nanoparticles (CRM-Chs-NPs) was also assessed. Methods: In a 60-day trial, 40 male Sprague Dawley rats were divided into 4 groups: Control, CRM-Chs-NPs (curcumin-encapsulated chitosan nanoparticles), FNE (15 mg/kg bw), and FNE + CRM-Chs-NPs. Results: FNE exposure induced reactive oxygen species generation, ATP production disruption, activation of inflammatory and apoptotic pathways, mitochondrial function and dynamics impairment, neurotransmitter level perturbation, and mitophagy promotion in rat brains. Molecular docking analysis revealed that FNE interacts with key binding sites of dopamine synthesis and transport proteins. On the other hand, CRM-Chs-NPs mitigated FNE’s toxic effects by enhancing mitochondrial dynamics, antioxidant activity, and ATP production and promoting anti-inflammatory and antiapoptotic responses.Conclusion: In summary, FNE appears to induce dopaminergic degeneration through various mechanisms, and CRM-Chs-NPs emerged as a potential therapeutic intervention for protecting the nervous tissue microenvironment
Therapeutic Uses of Red Macroalgae
Red Seaweed “Rhodophyta” are an important group of macroalgae that include approximately 7000 species. They are a rich source of structurally diverse bioactive constituents, including protein, sulfated polysaccharides, pigments, polyunsaturated fatty acids, vitamins, minerals, and phenolic compounds with nutritional, medical, and industrial importance. Polysaccharides are the main components in the cell wall of red algae and represent about 40–50% of the dry weight, which are extensively utilized in industry and pharmaceutical compounds, due to their thickening and gelling properties. The hydrocolloids galactans carrageenans and agars are the main red seaweed cell wall polysaccharides, which had broad-spectrum therapeutic characters. Generally, the chemical contents of seaweed are different according to the algal species, growth stage, environment, and external conditions, e.g., the temperature of the water, light intensity, nutrient concentrations in the ecosystem. Economically, they can be recommended as a substitute source for natural ingredients that contribute to a broad range of bioactivities like cancer therapy, anti-inflammatory agents, and acetylcholinesterase inhibitory. This review touches on the main points of the pharmaceutical applications of red seaweed, as well as the exploitation of their specific compounds and secondary metabolites with vital roles
Antibacterial, Immunomodulatory, and Lung Protective Effects of Boswelliadalzielii Oleoresin Ethanol Extract in Pulmonary Diseases: In Vitro and In Vivo Studies
Lung diseases such as asthma, chronic obstructive pulmonary diseases, and pneumonia are causing many global health problems. The COVID-19 pandemic has directed the scientific community’s attention toward performing more research to explore novel therapeutic drugs for pulmonary diseases. Herein, gas chromatography coupled with mass spectrometry tentatively identified 44 compounds in frankincense ethanol extract (FEE). We investigated the antibacterial and antibiofilm effects of FEE against Pseudomonas aeruginosa bacteria, isolated from patients with respiratory infections. In addition, its in vitro immunomodulatory activity was explored by the detection of the gene expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), nitric oxide synthase (iNOS), cycloxygenase-2 (COX-2), and nuclear factor kappa-B (NF-κB) in lipopolysaccharide (LPS)-induced peripheral blood mononuclear cells (PBMC). In addition, its anticancer activity against the A549 lung cancer cell line and human skin fibroblast (HSF) normal cell line was studied. Moreover, the in vivo lung protective potential of FEE was explored histologically and immunohistochemically in mice using a benzo(a)pyrene induced lung damage model. FEE exhibited antibacterial and antibiofilm activities besides the significant inhibition of gene expression of TNFα, IL-6, and NF-κB. FEE also exerted a cytotoxic effect against A549 cell line. Histological and immunohistochemical investigations with morphometric analysis of the mean area percentage and color intensity of positive TNF-α, COX-2, and NF-κB and Bcl-2 reactions revealed the lung protective activity of FEE. This study outlined the promising therapeutic activity of oleoresin obtained from B. dalzielii in the treatment of different pulmonary diseases
Green Coffee Bean Extract Normalize Obesity-Induced Alterations of Metabolic Parameters in Rats by Upregulating Adiponectin and GLUT4 Levels and Reducing RBP-4 and HOMA-IR
Obesity is a serious public health issue worldwide. Finding safe and efficacious products to reverse obesity has proven to be a difficult challenge. This study showed the effects of Coffea arabica or green coffee bean extract (GCBE) on obesity disorders and the improvement of obesity-induced insulin resistance, dyslipidemia, and inflammation. The active constituents of GCBE were identified via high-performance liquid chromatography. Twenty-four male albino Wistar rats were divided into two groups. The first group (Group I) was fed a control diet, whereas the second group was fed a high-fat diet (HFD) for eight weeks till obesity induction. The second group was equally subdivided into Group II, which received HFD, and Group III, which received HFD + GCBE for another eight weeks. The body and organ weights of the animals were measured, and blood and adipose tissue samples were collected for analysis. The results indicated that the administration of GCBE significantly decreased the body and organ weights. Furthermore, it had an ameliorative effect on serum biochemical parameters. It dramatically reduced total cholesterol, triacylglycerol, low-density lipoprotein cholesterol, very low-density lipoprotein cholesterol, glucose, and insulin levels. In addition, an improvement in homeostasis model assessment-insulin resistance and an enhancement of high-density lipoprotein cholesterol levels were observed compared with the HFD group. In addition, the group treated with GCBE exhibited a marked increase in serum levels of adiponectin (an anti-inflammatory adipokine). In addition, a considerable reduction in adipocyte hypertrophy was found following GCBE treatment. Remarkably, the administration of GCBE resulted in a remarkable decrease in the expression of RBP4 (a pro-inflammatory cytokine), whereas an increase in GLLUT4 expression was observed in the adipose tissue. This improved insulin resistance in GCBE-administered HFD rats compared with other HFD rats. Our study showed that GCBE exhibits anti-obesity activity and may be used as a natural supplement to prevent and treat obesity and its associated disorders
Assessment of Anti-Alzheimer Pursuit of Jambolan Fruit Extract and/or Choline against AlCl<sub>3</sub> Toxicity in Rats
Jambolan fruit extract and choline were investigated for Aluminum tri chloride (AlCl3)-induced Alzheimer’s disease in rats. Thirty-six male “Sprague Dawley” rats weighing (150 ± 10 g) were allocated into six groups; the first group was fed a baseline diet and served as a negative control. Alzheimer’s disease (AD) was induced in Group 2 rats by oral administration of AlCl3 (17 mg/kg body weight) dissolved in distilled water (served as a positive control). Rats in Group 3 were orally supplemented concomitantly with both 500 mg/kg BW of an ethanolic extract of jambolan fruit once daily for 28 days and AlCl3 (17 mg/kg body weight). Group 4: Rivastigmine (RIVA) aqueous infusion (0.3 mg/kg BW/day) was given orally to rats as a reference drug concomitantly with oral supplementation of AlCl3 (17 mg/kg body weight) for 28 days. Group 5 rats were orally treated with choline (1.1 g/kg) concomitantly with oral supplementation of AlCl3 (17 mg/kg body weight). Group 6 was given 500 mg/kg of jambolan fruit ethanolic extract and 1.1 g/kg of choline orally to test for additive effects concurrently with oral supplementation of AlCl3 (17 mg/kg bw) for 28 days. Body weight gain, feed intake, feed efficiency ratio, and relative brain, liver, kidney, and spleen weight were calculated after the trial. Brain tissue assessment was analyzed for antioxidant/oxidant markers, biochemical analysis in blood serum, a phenolic compound in Jambolan fruits extracted by high-performance liquid chromatography (HPLC), and histopathology of the brain. The results showed that Jambolan fruit extract and choline chloride improved brain functions, histopathology, and antioxidant enzyme activity compared with the positive group. In conclusion, administering jambolan fruit extract and choline can lower the toxic impacts of aluminum chloride on the brain
Lutein Modulates Oxidative Stress, Inflammatory and Apoptotic Biomarkers Related to Di-(2-Ethylhexyl) Phthalate (DEHP) Hepato-Nephrotoxicity in Male Rats: Role of Nuclear Factor Kappa B
Phthalates are widely distributed in our environment due to their usage in many industries, especially in plastic production, which has become an essential part of daily life. This investigation aimed to assess the potential remedial influence of lutein, a naturally occurring carotenoid, on phthalate-triggered damage to the liver and kidneys. When di-(2-ethylhexyl) phthalate (DEHP) was administered to male albino rats over sixty straight days at a dosage of 200 mg/kg body weight, it resulted in a significant increase in the serum activity of liver enzymes (AST, ALT, and GGT), alpha-fetoprotein, creatinine, and cystatin-C, as well as disruptions in the serum protein profile. In addition, intoxication with DEHP affected hepato-renal tissues’ redox balance. It increased the content of some proinflammatory cytokines, nuclear factor kappa B (Nf-κB), and apoptotic marker (caspase-3); likewise, DEHP-induced toxicity and decreased the level of anti-apoptotic protein (Bcl-2) in these tissues. Lutein administration at a dose level of 40 mg/kg b.w efficiently facilitated the changes in serum biochemical constituents, hepato-renal oxidative disturbance, and inflammatory, apoptotic, and histopathological alterations induced by DEHP intoxication. In conclusion, it can be presumed that lutein is protective as a natural carotenoid against DEHP toxicity
Exploring satisfaction level among outpatients regarding pharmacy facilities and services in the Kingdom of Saudi Arabia; a large regional analysis.
BackgroundEvaluation of patients`satisfaction towards pharmacy services is of utmost importance to ensure the quality of care. It helps in identifying domains requiring improvements to provide high quality pharmacy services to ensure the provision of enhanced pharmaceutical care. The current study aims to ascertain the extent of satisfaction towards pharmacy services among patients attending outpatient pharmacies in Kingdom of Saudi Arabia.MethodsA hospital-based cross-sectional study involving 746 patients attending outpatient pharmacies of various public hospitals was conducted from 01 January to 15 February 2020. Information on socio-demographic profile of the study subjects along with their satisfaction towards outpatient pharmacy was extracted by using a 23-items questionnaire. These questions were divided into two domains including 7 questions related to the pharmacy facilities (questions from 1F to 7F) and 8 questions for pharmacy services (questions from 1S to 8S), where F and S denotes facilities and services, respectively. The cumulative satisfaction score was estimated by a 5-item Likert scale with a maximum score of 5 for each item. The relationship between demographics and satisfaction scores was evaluated by using appropriate statistics.ResultsThere were 746 patients with male preponderance (58.8%). The overall satisfaction score was 2.97 ± 0.65. Satisfaction towards pharmacy services scored lower (mean score: 3.91 ± 0.77) than pharmacy facilities (mean score: 4.03 ± 0.66). Items related to patient`s counseling (3F, 2S, 3S, 6S) scored least during the analysis. Older patients (p = 0.006), male gender (pConclusionThis study reported that the satisfaction level of patients attending outpatient pharmacies was low and differed among various socio-demographic groups. Approximately one-half of the patients were not satisfied with outpatient pharmacy services. These findings underscore the dire need for managerial interventions including the hiring of trained professionals, onsite training of pharmacy staff, initiation of clinical or patient centered pharmacy services, evaluation of patient`s response towards the services and appropriate controlling measures, irrespective to the type of hospitals