19 research outputs found

    Ga2O3 Nanowire Synthesis and Device Applications

    Get PDF
    In recent years, gallium oxide nanowires have been used in many scientific disciplines due to their outstanding and unique properties. Several applications have focused on incorporating gallium oxide nanowires in devices to improve their performance and efficiency. These distinctive structures bring new opportunities to several research fields and applications such as optoelectronics, electronics, and chemistry. This chapter provides a basic overview of gallium oxide’s properties and the growth process of gallium oxide nanowires, with an emphasis on varied applications and future challenges

    The Growth of Ga2O3 Nanowires on Silicon for Ultraviolet Photodetector

    No full text
    We investigated the effect of silver catalysts to enhance the growth of Ga2O3 nanowires. The growth of Ga2O3 nanowires on a P+-Si (100) substrate was demonstrated by using a thermal oxidation technique at high temperatures (~1000 °C) in the presence of a thin silver film that serves as a catalyst layer. We present the results of morphological, compositional, and electrical characterization of the Ga2O3 nanowires, including the measurements on photoconductance and transient time. Our results show that highly oriented, dense and long Ga2O3 nanowires can be grown directly on the surface of silicon. The Ga2O3 nanowires, with their inherent n-type characteristics formed a pn heterojunction when grown on silicon. The heterojunction showed rectifying characteristics and excellent UV photoresponse

    Dynamics Contributions to the Growth Mechanism of Ga2O3 Thin Film and NWs Enabled by Ag Catalyst

    No full text
    In the last few years, interest in the use of gallium oxide (Ga2O3) as a semiconductor for high power/high temperature devices and UV nano-sensors has grown. Ga2O3 has an enormous band gap of 4.8 eV, which makes it well suited for applications in harsh environments. In this work, we explored the effect of Ag thin film as a catalyst to grow gallium oxide. The growth of gallium oxide thin film and nanowires can be achieved by heating and oxidizing pure gallium at high temperatures (~1000 °C) in the presence of trace amounts of oxygen. We present the results of structural, morphological, and elemental characterization of the β-Ga2O3 thin film and nanowires. In addition, we explore and compare the sensing properties of the β-Ga2O3 thin film and nanowires for UV detection. The proposed process can be optimized to a high scale production Ga2O3 nanocrystalline thin film and nanowires. By using Ag thin film as a catalyst, we can control the growth parameters to obtain either nanocrystalline thin film or nanowires
    corecore