31 research outputs found

    Morphological changes of glia in prion and a prion-like disorder.

    Get PDF
    Several neurodegenerative diseases such as Alzheimer’s, Parkinson’s and Huntington’s are considered to be prion-like disorders in that they are all proteinopathies where in aberrant proteins spread throughout the brain during disease progression, and thus they may share molecular basis and mechanisms of propagation. Therefore, studies elucidating mechanisms of prion propagation may be relevant to other neurodegenerative diseases. While substantial progress has been made, the pathogen- esis of these neurodegenerative diseases is still largely unknown, and as consequence, to date no truly effective treatments that prevent onset or delay progression of these diseases have been identified. In addition to propagation of misfolded proteins, these diseases all induce a host response that includes activation of astrocytes and microglial cells. However, in our opinion, the glial response in each of these diseases has not been well-defined. Since a role for glial response in prion disease has been clearly demonstrated in a previous study concerning Scrapie in sheep, a similar approach to analysis of astrocytic gliosis has been taken here for Creutzfeldt-Jakob (CJD) and Alzheimer’s Diseases (AD). Here, morphological analysis of glial cells in cerebella from CJD and AD patients (as the most common prion and prion-like disorders, respectively) was performed. The results presented in this study support the involvement of glial cells not only in the pathogenesis of CJD, but also of AD. A relationship between intensity and morphology is observed in astroglia from the molecular layer in both pathologies. By contrast, the involvement of microgliosis in AD-affected samples showed a lower relevance from that observed in CJD, since reactive microglia were much more abundant in prion disease. Further analysis of the role of gliosis in CJD and AD, as well as other neurodegenerative diseases, may well advance knowledge of the mechanisms underlying these diseases and may also provide new targets for therapeutic intervention

    Morphological changes of glia in prion and a prion-like disorder

    Get PDF
    Several neurodegenerative diseases such as Alzheimer’s, Parkinson’s and Huntington’s are considered to be prion-like disorders in that they are all proteinopathies where in aberrant proteins spread throughout the brain during disease progression, and thus they may share molecular basis and mechanisms of propagation. Therefore, studies elucidating mechanisms of prion propagation may be relevant to other neurodegenerative diseases. While substantial progress has been made, the pathogenesis of these neurodegenerative diseases is still largely unknown, and as consequence, to date no truly effective treatments that prevent onset or delay progression of these diseases have been identified. In addition to propagation of misfolded proteins, these diseases all induce a host response that includes activation of astrocytes and microglial cells. However, in our opinion, the glial response in each of these diseases has not been well-defined. Since a role for glial response in prion disease has been clearly demonstrated in a previous study concerning Scrapie in sheep, a similar approach to analysis of astrocytic gliosis has been taken here for Creutzfeldt-Jakob (CJD) and Alzheimer’s Diseases (AD). Here, morphological analysis of glial cells in cerebella from CJD and AD patients (as the most common prion and prion-like disorders, respectively) was performed. The results presented in this study support the involvement of glial cells not only in the pathogenesis of CJD, but also of AD. A relationship between intensity and morphology is observed in astroglia from the molecular layer in both pathologies. By contrast, the involvement of microgliosis in AD-affected samples showed a lower relevance from that observed in CJD, since reactive microglia were much more abundant in prion disease. Further analysis of the role of gliosis in CJD and AD, as well as other neurodegenerative diseases, may well advance knowledge of the mechanisms underlying these diseases and may also provide new targets for therapeutic intervention

    Glial alterations in human prion diseases

    Get PDF
    Background: Neuroinflammation has recently been proposed to be a major component of neurodegenerative diseases. The aim of this study was to determine how the interaction between microglia and astroglia, which are the primary immune cell populations in the brain, and pathological prion protein (PrPsc) could influence the development and propagation of this neurodegenerative disease. Because a relevant role for glial response in prion disease has been clearly demonstrated in our previous studies using the natural animal model, a similar approach has been taken here using the natural human model. Methods: A morphological approach has been developed to analyze cerebellar samples from patients with Creutzfeldt-Jakob disease (CJD) in comparison with healthy control cases. Histopathological lesions were assessed, and PrPsc, glial fibrillary acidic protein (GFAP) and reactive microglia were immunolabelled by specific antibodies. Furthermore, co-location studies using confocal microscopy were performed to determine the possible relationships between both types of glial cells in all samples. Results: The results presented in this study support the involvement of both types of glial cells in CJD. Evidence of increased astrocyte and microglia reactivity can be observed in all CJD cases, and a close relationship between the types of glia is demonstrated by co-location studies. Conclusion: Proteinopathies such as Alzheimer, Parkinson, and Huntington diseases, where aberrant proteins spread throughout the brain during disease progression, may share a molecular basis and mechanisms of propagation. Therefore, studies elucidating the interaction between gliosis and prion propagation may be relevant to these other neurodegenerative diseases and may provide new targets for therapeutic intervention

    An Update on Autophagy in Prion Diseases

    Get PDF
    Autophagy is a dynamic intracellular mechanism involved in protein and organelle turnover through lysosomal degradation. When properly regulated, autophagy supports normal cellular and developmental processes, whereas defects in autophagic degradation have been associated with several pathologies, including prion diseases. Prion diseases, or transmissible spongiform encephalopathies (TSE), are a group of fatal neurodegenerative disorders characterized by the accumulation of the pathological misfolded isoform (PrPSc) of the physiological cellular prion protein (PrPc) in the central nervous system. Autophagic vacuoles have been described in experimental models of TSE and in the natural disease in humans. The precise connection of this process with prion-related neuropathology, or even whether autophagy is completely beneficial or pathogenic during neurodegeneration, is poorly understood. Thus, the biological role of autophagy in these diseases is still open to debate. During the last years, researchers have used a wide range of morphological, genetic and biochemical methods to monitor and manipulate the autophagic pathway and thus determine the specific role of this process in TSE. It has been suggested that PrPc could play a crucial role in modulating the autophagic pathway in neuronal cells, and the presence of abnormal autophagic activity has been frequently observed in several models of TSE both in vitro and in vivo, as well as in human prion diseases. Altogether, these findings suggest that autophagy is implicated in prion neuropathology and points to an impairment or failure of the process, potentially contributing to the pathogenesis of the disease. Additionally, autophagy is now emerging as a host defense response in controlling prion infection that plays a protective role by facilitating the clearance of aggregation-prone proteins accumulated within neurons. Since autophagy is one of the pathways of PrPSc degradation, and drug-induced stimulation of autophagic flux (the dynamic process of autophagic degradation activity) produces anti-prion effects, new treatments based on its activation have been tested to develop therapeutic strategies for prion diseases. In this review, we summarize previous and recent findings concerning the role of autophagy in TSE

    Variability in disease phenotypes within a single PRNP genotype suggests the existence of multiple natural sheep scarpie strains within Europe

    Get PDF
    Variability of pathological phenotypes within classical sheep scrapie cases has been reported for some time, but in many instances it has been attributed to differences in the PRNP genotype of the host. To address this issue we have examined by immunohistochemistry (IHC) and Western blotting (WB) for the disease-associated form of the prion protein (PrPd), the brains of 23 sheep from five European countries, all of which were of the same ARQ/ARQ genotype. As a result of IHC examinations, sheep were distributed into five groups with different phenotypes and the groups were the same regardless of the scoring method used, ‘long’ or ‘short’ PrPd profiling. The groups made did not respond to the geographical origin of the cases and did not correlate with the vacuolar lesion profiles, which showed a high individual variability. Discriminatory IHC and WB methods coincided to detect a ‘CH1641-like’ case but otherwise correlated poorly in the classification of disease phenotypes. No other polymorphisms of the PRNP gene were found that could account for the pathological differences, except perhaps for a sheep from Spain with a mutation at codon 103 and a unique pathological phenotype. Preliminary evidence indicates that those different IHC phenotypes correlate with distinct biological properties on bioassay, suggesting that they are indicative of strain diversity. We therefore conclude that natural scrapie strains exist and that they can be revealed by detailed pathological examinations, which can be harmonized between laboratories to produce comparable results

    Neurogranin and Neurofilament Light Chain as Preclinical Biomarkers in Scrapie

    Get PDF
    Prion diseases are diagnosed in the symptomatic stage, when the neuronal damage is spread throughout the central nervous system (CNS). The assessment of biological features that allow the detection of asymptomatic cases is needed, and, in this context, scrapie, where pre-symptomatic infected animals can be detected through rectal biopsy, becomes a good study model. Neurogranin (Ng) and neurofilament light chain (NfL) are proteins that reflect synaptic and axonal damage and have been studied as cerebrospinal fluid (CSF) biomarkers in different neurodegenerative disorders. In this study, we evaluated Ng and NfL both at the protein and transcript levels in the CNS of preclinical and clinical scrapie-affected sheep compared with healthy controls and assessed their levels in ovine CSF. The correlation between these proteins and the main neuropathological events in prion diseases, PrPSc deposition and spongiosis, was also assessed. The results show a decrease in Ng and NfL at the protein and gene expression levels as the disease progresses, and significant changes between the control and preclinical animals. On the contrary, the CSF levels of NfL increased throughout the progression of the disease. Negative correlations between neuropathological markers of prion disease and the concentration of the studied proteins were also found. Although further research is needed, these results suggest that Ng and NfL could act as biomarkers for neurodegeneration onset and intensity in preclinical cases of scrapie

    Prion Protein Gene Variability in Spanish Goats. Inference through Susceptibility to Classical Scrapie Strains and Pathogenic Distribution of Peripheral PrPsc

    Get PDF
    Classical scrapie is a neurological disorder of the central nervous system (CNS) characterized by the accumulation of an abnormal, partially protease resistant prion protein (PrPsc) in the CNS and in some peripheral tissues in domestic small ruminants. Whereas the pathological changes and genetic susceptibility of ovine scrapie are well known, caprine scrapie has been less well studied. We report here a pathological study of 13 scrapie-affected goats diagnosed in Spain during the last 9 years. We used immunohistochemical and biochemical techniques to discriminate between classical and atypical scrapie and bovine spongiform encephalopathy (BSE). All the animals displayed PrPsc distribution patterns and western blot characteristics compatible with classical scrapie. In addition, we determined the complete open reading frame sequence of the PRNP in these scrapie-affected animals. The polymorphisms observed were compared with those of the herd mates (n¿=¿665) and with the frequencies of healthy herds (n¿=¿581) of native Spanish goats (Retinta, Pirenaica and Moncaina) and other worldwide breeds reared in Spain (Saanen, Alpine and crossbreed). In total, sixteen polymorphic sites were identified, including the known amino acid substitutions at codons G37V, G127S, M137I, I142M, H143R, R151H, R154H, R211Q, Q222K, G232W, and P240S, and new polymorphisms at codons G74D, M112T, R139S, L141F and Q215R. In addition, the known 42, 138 and 179 silent mutations were detected, and one new one is reported at codon 122. The genetic differences observed in the population studied have been attributed to breed and most of the novel polymorphic codons show frequencies lower than 5%. This work provides the first basis of polymorphic distribution of PRNP in native and worldwide goat breeds reared in Spain

    Neuroimmune response mediated by cytokines in natural scrapie after chronic dexamethasone treatment

    Get PDF
    The actual role of prion protein-induced glial activation and subsequent cytokine secretion during prion diseases is still incompletely understood. The overall aim of this study is to assess the effect of an anti-inflammatory treatment with dexamethasone on different cytokines released by neuroglial cells that are potentially related to neuroinflammation in natural scrapie. This study emphasizes the complex interactions existent among several pleiotropic neuromodulator peptides and provides a global approach to clarify neuroinflammatory processes in prion diseases. Addition-ally, an impairment of communication between microglial and astroglial populations mediated by cytokines, mainly IL-1, is suggested. The main novelty of this study is that it is the first one assessing in situ neuroinflammatory activity in relation to chronic anti-inflammatory therapy, gaining relevance because it is based on a natural model. The cytokine profile data would suggest the activation of some neurotoxicity-associated route. Consequently, targeting such a pathway might be a new approach to modify the damaging effects of neuroinflammation

    Gene expression profiling of mesenteric lymph nodes from sheep with natural scrapie

    Get PDF
    Background: Prion diseases are characterized by the accumulation of the pathogenic PrPSc protein, mainly in the brain and the lymphoreticular system. Although prions multiply/accumulate in the lymph nodes without any detectable pathology, transcriptional changes in this tissue may reflect biological processes that contribute to the molecular pathogenesis of prion diseases. Little is known about the molecular processes that occur in the lymphoreticular system in early and late stages of prion disease. We performed a microarray-based study to identify genes that are differentially expressed at different disease stages in the mesenteric lymph node of sheep naturally infected with scrapie. Oligo DNA microarrays were used to identify gene-expression profiles in the early/middle (preclinical) and late (clinical) stages of the disease. Results: In the clinical stage of the disease, we detected 105 genes that were differentially expressed (=2-fold change in expression). Of these, 43 were upregulated and 62 downregulated as compared with age-matched negative controls. Fewer genes (50) were differentially expressed in the preclinical stage of the disease. Gene Ontology enrichment analysis revealed that the differentially expressed genes were largely associated with the following terms: glycoprotein, extracellular region, disulfide bond, cell cycle and extracellular matrix. Moreover, some of the annotated genes could be grouped into 3 specific signaling pathways: focal adhesion, PPAR signaling and ECM-receptor interaction. We discuss the relationship between the observed gene expression profiles and PrPSc deposition and the potential involvement in the pathogenesis of scrapie of 7 specific differentially expressed genes whose expression levels were confirmed by real time-PCR. Conclusions: The present findings identify new genes that may be involved in the pathogenesis of natural scrapie infection in the lymphoreticular system, and confirm previous reports describing scrapie-induced alterations in the expression of genes involved in protein misfolding, angiogenesis and the oxidative stress response. Further studies will be necessary to determine the role of these genes in prion replication, dissemination and in the response of the organism to this disease

    A Single Amino Acid Substitution, Found in Mammals with Low Susceptibility to Prion Diseases, Delays Propagation of Two Prion Strains in Highly Susceptible Transgenic Mouse Models

    Get PDF
    Specific variations in the amino acid sequence of prion protein (PrP) are key determinants of susceptibility to prion diseases. We previously showed that an amino acid substitution specific to canids confers resistance to prion diseases when expressed in mice and demonstrated its dominant-negative protective effect against a variety of infectious prion strains of different origins and characteristics. Here, we show that expression of this single amino acid change significantly increases survival time in transgenic mice expressing bank vole cellular prion protein (PrP C ), which is inherently prone to misfolding, following inoculation with two distinct prion strains (the CWD-vole strain and an atypical strain of spontaneous origin). This amino acid substitution hinders the propagation of both prion strains, even when expressed in the context of a PrP C uniquely susceptible to a wide range of prion isolates. Non-inoculated mice expressing this substitution experience spontaneous prion formation, but showing an increase in survival time comparable to that observed in mutant mice inoculated with the atypical strain. Our results underscore the importance of this PrP variant in the search for molecules with therapeutic potential against prion diseases
    corecore