6,224 research outputs found

    Characterization of hormone and protein release from alpha-toxin- permeabilized chromaffin cells in primary culture

    Get PDF
    Addition of Staphylococcus aureus alpha-toxin to adult bovine chromaffin cells maintained in primary culture causes permeabilization of cell membrane as shown by the release of intracellular 86Rb+. The alpha-toxin does not provoke a spontaneous release of either catecholamines or chromogranin A, a protein marker of the secretory granule, showing the integrity of the secretory vesicle membrane. However the addition of micromolar free Ca2+ concentration induced the co-release of noradrenaline and chromogranin A. In alpha-toxin-treated cells, the released chromogranin A could not be sedimented and lactate dehydrogenase was still associated within cells, which provides direct evidence that secretory product is liberated by exocytosis. By contrast, permeabilization of cells with digitonin caused a Ca2+- dependent but also a Ca2+-independent release of secretory product, a dramatic loss of lactate dehydrogenase, as well as release of secretory product in a sedimentable form. Ca2+-dependent exocytosis from alpha- toxin-permeabilized cells required Mg2+-ATP and did not occur in the presence of other nucleotides. Thus alpha-toxin is a convenient tool to permeabilize chromaffin cells, and has the advantage of keeping intracellular structures, specifically the exocytotic machinery, intact

    Surface spin flip probability of mesoscopic Ag wires

    Full text link
    Spin relaxation in mesoscopic Ag wires in the diffusive transport regime is studied via nonlocal spin valve and Hanle effect measurements performed on permalloy/Ag lateral spin valves. The ratio between momentum and spin relaxation times is not constant at low temperatures. This can be explained with the Elliott-Yafet spin relaxation mechanism by considering the momentum surface relaxation time as being temperature dependent. We present a model to separately determine spin flip probabilities for phonon, impurity and surface scattering and find that the spin flip probability is highest for surface scattering.Comment: 5 pages, 4 figure

    Evidence of Vortex Jamming in Abrikosov Vortex Flux Flow Regime

    Full text link
    We report on dynamics of non-local Abrikosov vortex flow in mesoscopic superconducting Nb channels. Magnetic field dependence of the non-local voltage induced by the flux flow shows that vortices form ordered vortex chains. Voltage asymmetry (rectification) with respect to the direction of vortex flow is evidence that vortex jamming strongly moderates vortex dynamics in mesoscopic geometries. The findings can be applied to superconducting devices exploiting vortex dynamics and vortex manipulation, including superconducting wires with engineered pinning centers.Comment: 5 pages, 3 figure

    Kinetic Energy Density Study of Some Representative Semilocal Kinetic Energy Functionals

    Full text link
    There is a number of explicit kinetic energy density functionals for non-interacting electron systems that are obtained in terms of the electron density and its derivatives. These semilocal functionals have been widely used in the literature. In this work we present a comparative study of the kinetic energy density of these semilocal functionals, stressing the importance of the local behavior to assess the quality of the functionals. We propose a quality factor that measures the local differences between the usual orbital-based kinetic energy density distributions and the approximated ones, allowing to ensure if the good results obtained for the total kinetic energies with these semilocal functionals are due to their correct local performance or to error cancellations. We have also included contributions coming from the laplacian of the electron density to work with an infinite set of kinetic energy densities. For all the functionals but one we have found that their success in the evaluation of the total kinetic energy are due to global error cancellations, whereas the local behavior of their kinetic energy density becomes worse than that corresponding to the Thomas-Fermi functional.Comment: 12 pages, 3 figure

    Detection and quantification of inverse spin Hall effect from spin pumping in permalloy/normal metal bilayers

    Full text link
    Spin pumping is a mechanism that generates spin currents from ferromagnetic resonance (FMR) over macroscopic interfacial areas, thereby enabling sensitive detection of the inverse spin Hall effect that transforms spin into charge currents in non-magnetic conductors. Here we study the spin-pumping-induced voltages due to the inverse spin Hall effect in permalloy/normal metal bilayers integrated into coplanar waveguides for different normal metals and as a function of angle of the applied magnetic field direction, as well as microwave frequency and power. We find good agreement between experimental data and a theoretical model that includes contributions from anisotropic magnetoresistance (AMR) and inverse spin Hall effect (ISHE). The analysis provides consistent results over a wide range of experimental conditions as long as the precise magnetization trajectory is taken into account. The spin Hall angles for Pt, Pd, Au and Mo were determined with high precision to be 0.013±0.0020.013\pm0.002, 0.0064±0.0010.0064\pm0.001, 0.0035±0.00030.0035\pm0.0003 and 0.0005±0.0001-0.0005\pm0.0001, respectively.Comment: 11 page

    Understanding the Clean Interface between Covalent Si and Ionic Al2O3

    Full text link
    The atomic and electronic structures of the (001)-Si/(001)-gamma-Al2O3 heterointerface are investigated by first principles total energy calculations combined with a newly developed "modified basin-hopping" method. It is found that all interface Si atoms are fourfold coordinated due to the formation of Si-O and unexpected covalent Si-Al bonds in the new abrupt interface model. And the interface has perfect electronic properties in that the unpassivated interface has a large LDA band gap and no gap levels. These results show that it is possible to have clean semiconductor-oxide interfaces

    Superparamagnetic relaxation of Fe deposited on MgO(001)

    Get PDF
    Superparamagnetic behavior is investigated for Fe grown at 700 K onto MgO(001) to a thickness equivalent to that of a ten monolayer film. Two such Fe deposits separated by a 200-Å deposit of MgO exhibit a ferromagnetic response with no hysteresis at either 300 or 150 K, but with identical reduced magnetization curves M(H/T) which confirms the existence of superparamagnetism. M(H) data at 300 K were fitted to a Langevin function to yield an average particle size of 100 Å diameter. M(T) for field-cooled and zero-field-cooled samples shows behavior characteristic of superparamagnetic particles with a distribution in particle size. Time-dependent remanent magnetization data measured over a 20 h period at various temperatures show nonexponential decay attributed to the distribution in particle size and interactions among the particles

    Quantifying spin Hall angles from spin pumping: Experiments and Theory

    Full text link
    Spin Hall effects intermix spin and charge currents even in nonmagnetic materials and, therefore, ultimately may allow the use of spin transport without the need for ferromagnets. We show how spin Hall effects can be quantified by integrating permalloy/normal metal (N) bilayers into a coplanar waveguide. A dc spin current in N can be generated by spin pumping in a controllable way by ferromagnetic resonance. The transverse dc voltage detected along the permalloy/N has contributions from both the anisotropic magnetoresistance (AMR) and the spin Hall effect, which can be distinguished by their symmetries. We developed a theory that accounts for both. In this way, we determine the spin Hall angle quantitatively for Pt, Au and Mo. This approach can readily be adapted to any conducting material with even very small spin Hall angles.Comment: 4 pages, 4 figure

    Unanticipated proximity behavior in ferromagnet-superconductor heterostructures with controlled magnetic noncollinearity

    Get PDF
    Magnetization noncollinearity in ferromagnet-superconductor (F/S) heterostructures is expected to enhance the superconducting transition temperature (Tc) according to the domain-wall superconductivity theory, or to suppress Tc when spin-triplet Cooper pairs are explicitly considered. We study the proximity effect in F/S structures where the F layer is a Sm-Co/Py exchange-spring bilayer and the S layer is Nb. The exchange-spring contains a single, controllable and quantifiable domain wall in the Py layer. We observe an enhancement of superconductivity that is nonmonotonic as the Py domain wall is increasingly twisted via rotating a magnetic field, different from theoretical predictions. We have excluded magnetic fields and vortex motion as the source of the nonmonotonic behavior. This unanticipated proximity behavior suggests that new physics is yet to be captured in the theoretical treatments of F/S systems containing noncollinear magnetization.Comment: 17 pages, 4 figures. Physical Review Letters in pres
    corecore