54 research outputs found

    Ab Initio Calculation of the Lattice Distortions induced by Substitutional Ag- and Cu- Impurities in Alkali Halide Crystals

    Get PDF
    An ab initio study of the doping of alkali halide crystals (AX: A = Li, Na, K, Rb; X = F, Cl, Br, I) by ns2 anions (Ag- and Cu-) is presented. Large active clusters with 179 ions embedded in the surrounding crystalline lattice are considered in order to describe properly the lattice relaxation induced by the introduction of substitutional impurities. In all the cases considered, the lattice distortions imply the concerted movement of several shells of neighbors. The shell displacements are smaller for the smaller anion Cu-, as expected. The study of the family of rock-salt alkali halides (excepting CsF) allows us to extract trends that might be useful at a predictive level in the study of other impurity systems. Those trends are presented and discussed in terms of simple geometric arguments.Comment: LaTeX file. 8 pages, 3 EPS pictures. New version contains calculations of the energy of formation of the defects with model clusters of different size

    The high-pressure phase of boron, {\gamma}-B28: disputes and conclusions of 5 years after discovery

    Full text link
    {\gamma}-B28 is a recently established high-pressure phase of boron. Its structure consists of icosahedral B12 clusters and B2 dumbbells in a NaCl-type arrangement (B2){\delta}+(B12){\delta}- and displays a significant charge transfer {\delta}~0.5- 0.6. The discovery of this phase proved essential for the understanding and construction of the phase diagram of boron. {\gamma}-B28 was first experimentally obtained as a pure boron allotrope in early 2004 and its structure was discovered in 2006. This paper reviews recent results and in particular deals with the contentious issues related to the equation of state, hardness, putative isostructural phase transformation at ~40 GPa, and debates on the nature of chemical bonding in this phase. Our analysis confirms that (a) calculations based on density functional theory give an accurate description of its equation of state, (b) the reported isostructural phase transformation in {\gamma}-B28 is an artifact rather than a fact, (c) the best estimate of hardness of this phase is 50 GPa, (d) chemical bonding in this phase has a significant degree of ionicity. Apart from presenting an overview of previous results within a consistent view grounded in experiment, thermodynamics and quantum mechanics, we present new results on Bader charges in {\gamma}-B28 using different levels of quantum-mechanical theory (GGA, exact exchange, and HSE06 hybrid functional), and show that the earlier conclusion about significant degree of partial ionicity in this phase is very robust

    An ab initio

    No full text

    Atoms and bonds in molecules and chemical explanations

    No full text
    • …
    corecore