538 research outputs found

    Clinical Significance of Hip Separation in Metal on Polyethylene, Metal on Metal, and Ceramic on Ceramic THA Due to Resonant and Energy Dispersion Effects

    Get PDF
    Femoral head sliding within the acetabular cup does occur in THA. Since it isknown that impact conditions can lead to component ringing, the present studyinvestigates the vibrational response of variable bearing surface materials. A further understanding of the physical response resulting from impact during femoral head sliding may lead to valuable insight pertaining to THA failure.Accelerometers were mounted to synthetic bones which had been implanted with hip prostheses. Data was collected from these sensors as a machine impacted the femoral head into the acetabular cup. These tests were carried out for metal-metal, ceramicceramic, and metal-polyethylene bearing surfaces at varying loads. Contrary to the non impact condition, when hip separation was simulated leading to impact conditions, the frequency magnitudes were significantly increased. The results from this study revealed that the amplitude and range of vibration is dramatically increased when the femoral head is separated from the acetabular cup under impact conditions. The ceramic-ceramic material experienced the largest magnitude of frequency. The vibration caused by the ringing of components in the THA system has the potential to damage both prosthetic components as well as the area of the bone incontact with them. If the dominant frequencies seen during the testing for this study were to coincide with the resonant frequency of the bone at the implant/bone interface, then damage and degradation becomes much more likely, with the ultimate possibility of loosening and failure

    DISTAL RADIOULNAR JOINT BIOMECHANICS AND FOREARM MUSCLE ACTIVITY

    Get PDF
    Optimal management of fractures, post-traumatic arthritis and instability of the distal radioulnar joint (DRUJ) requires an understanding of the forces existing across this joint as a function of the activities of daily living. However, such knowledge is currently incomplete. The goal of this research was to quantify the loads that occur at the DRUJ during forearm rotation and to determine the effect that individual muscles have on those loads. Human and cadaver studies were used to analyze the shear (A-P), transverse (M-L) and resultant forces at the DRUJ and to determine the role that 15 individual muscles had on those forces. Data for scaling the muscles forces came from EMG analysis measuring muscle activity at nine positions of forearm rotation in volunteers during isometric pronation and supination. Muscle orientations were determined from the marked muscle origin and insertion locations of nine cadaveric arms at various stages of forearm rotation. The roles that individual muscles played in DRUJ loading were analyzed by removing the muscle of interest from the analysis and comparing the results. The EMG portion of this study found that the pronator quadratus, pronator teres, brachioradialis, flexor carpi radialis and palmaris longus contribute significantly to forearm pronation. The supinator, biceps brachii, and abductor pollicis longus were found to contribute significantly to supination. The results of the DRUJ analysis affirm that large transverse forces pass from the radius to the ulnar head at all positions of forearm rotation during pronation and supination (57.5N-181.4N). Shear forces exist at the DRUJ that act to pull the radius away from the ulna in the AP direction and are large enough to merit consideration when examining potential treatment options (7.9N-99.5N). Individual muscle analysis found that the extensor carpi radialis brevis, extensor pollicis longus, extensor carpi ulnaris, extensor indicis and palmaris longus had minimal effect on DRUJ loading. Other than the primary forearm rotators (pronator quadratus, pronator teres, supinator, biceps brachii), the muscles that exhibited the largest influence on DRUJ loading were the abductor pollicis longus, brachialis, brachioradialis, extensor carpi ulnaris, flexor carpi radialis, and flexor carpi ulnaris

    Window-based Streaming Graph Partitioning Algorithm

    Full text link
    In the recent years, the scale of graph datasets has increased to such a degree that a single machine is not capable of efficiently processing large graphs. Thereby, efficient graph partitioning is necessary for those large graph applications. Traditional graph partitioning generally loads the whole graph data into the memory before performing partitioning; this is not only a time consuming task but it also creates memory bottlenecks. These issues of memory limitation and enormous time complexity can be resolved using stream-based graph partitioning. A streaming graph partitioning algorithm reads vertices once and assigns that vertex to a partition accordingly. This is also called an one-pass algorithm. This paper proposes an efficient window-based streaming graph partitioning algorithm called WStream. The WStream algorithm is an edge-cut partitioning algorithm, which distributes a vertex among the partitions. Our results suggest that the WStream algorithm is able to partition large graph data efficiently while keeping the load balanced across different partitions, and communication to a minimum. Evaluation results with real workloads also prove the effectiveness of our proposed algorithm, and it achieves a significant reduction in load imbalance and edge-cut with different ranges of dataset

    A Bounded Affinity Theory of Religion and the Paranormal

    Get PDF
    We outline a theory of bounded affinity between religious experiences and beliefs and paranormalism, which emphasizes that religious and paranormal experiences and beliefs share inherent physiological, psychological, and ontological similarities. Despite these parallels, organized religious groups typically delineate a narrow subset of experiences and explanatory frames as acceptable and True, banishing others as either false or demonic. Accordingly, the theory provides a revised definition of the “paranormal” as beliefs and experiences explicitly rejected by science and organized religions. To demonstrate the utility of the theory, we show that, after controlling for levels of conventional religious practice, there is a strong, positive relationship between claiming Christian-based religious experiences and believing in, pursuing, and experiencing the paranormal, particularly among individuals not strongly tethered to organized religion. Bounded affinity theory makes sense of recent non-linear and complex moderation findings in the empirical literature and reiterates the importance of the paranormal for studies of religion

    A Randomized Parallel Sorting Algorithm With an Experimental Study

    Get PDF
    Previous schemes for sorting on general-purpose parallel machines have had to choose between poor load balancing and irregular communication or multiple rounds of all-to-all personalized communication. In this paper, we introduce a novel variation on sample sort which uses only two rounds of regular all-to-all personalized communication in a scheme that yields very good load balancing with virtually no overhead. Moreover, unlike previous variations, our algorithm efficiently handles the presence of duplicate values without the overhead of tagging each element with a unique identifier. This algorithm was implemented in Split-C and run on a variety of platforms, including the Thinking Machines CM-5, the IBM SP-2, and the Cray Research T3D. We ran our code using widely different benchmarks to examine the dependence of our algorithm on the input distribution. Our experimental results illustrate the efficiency and scalability of our algorithm across different platforms. In fact, it seems to..

    Gene Gun Research Project

    Get PDF
    The motivation behind this project is to design or improve a cheaper gene gun that can help the world. The goal is to design a new low-cost gene delivery system that will allow Dr. Mahajan and University of Akron students conduct new research, with the aim of advancing society in many different fields. A few examples would be improving crops resistances to insects or harsh weather. This could happen by altering their genes to repulse insects or have stronger bases to have better resistance to the wind. In the medical world you could use gene therapy to help fight cancer or other diseases. The approach to this project is research, design and trial and error. The research will mostly be on how the gene delivery system drives DNA into cells using micro needles

    The Program for climate Model diagnosis and Intercomparison: 20-th anniversary Symposium

    Full text link
    Twenty years ago, W. Lawrence (Larry) Gates approached the U.S. Department of Energy (DOE) Office of Energy Research (now the Office of Science) with a plan to coordinate the comparison and documentation of climate model differences. This effort would help improve our understanding of climate change through a systematic approach to model intercomparison. Early attempts at comparing results showed a surprisingly large range in control climate from such parameters as cloud cover, precipitation, and even atmospheric temperature. The DOE agreed to fund the effort at the Lawrence Livermore National Laboratory (LLNL), in part because of the existing computing environment and because of a preexisting atmospheric science group that contained a wide variety of expertise. The project was named the Program for Climate Model Diagnosis and Intercomparison (PCMDI), and it has changed the international landscape of climate modeling over the past 20 years. In spring 2009 the DOE hosted a 1-day symposium to celebrate the twentieth anniversary of PCMDI and to honor its founder, Larry Gates. Through their personal experiences, the morning presenters painted an image of climate science in the 1970s and 1980s, that generated early support from the international community for model intercomparison, thereby bringing PCMDI into existence. Four talks covered GatesÃÂâÃÂÃÂÃÂÃÂs early contributions to climate research at the University of California, Los Angeles (UCLA), the RAND Corporation, and Oregon State University through the founding of PCMDI to coordinate the Atmospheric Model Intercomparison Project (AMIP). The speakers were, in order of presentation, Warren Washington [National Center for Atmospheric Research (NCAR)], Kelly Redmond (Western Regional Climate Center), George Boer (Canadian Centre for Climate Modelling and Analysis), and Lennart Bengtsson [University of Reading, former director of the European Centre for Medium-Range Weather Forecasts (ECMWF)]. The afternoon session emphasized the scientific ideas that are the basis of PCMDIÃÂâÃÂÃÂÃÂÃÂs success, summarizing their evolution and impact. Four speakers followed the various PCMDI-supported climate model intercomparison projects, beginning with early work on cloud representations in models, presented by Robert D. Cess (Distinguished Professor Emeritus, Stony Brook University), and then the latest Cloud Feedback Model Intercomparison Projects (CFMIPs) led by Sandrine Bony (Laboratoire de MÃÂÃÂÃÂétÃÂÃÂÃÂéorologie Dynamique). Benjamin Santer (LLNL) presented a review of the climate change detection and attribution (D & A) work pioneered at PCMDI, and Gerald A. Meehl (NCAR) ended the day with a look toward the future of climate change research

    Enhanced Leak Detection

    Get PDF
    A key requirement for Veeder-Root’s Enhanced Leak Detection System is that it be able to test in situ for the presence of leaks at gasoline dispensing facilities. Aside from the obvious issues of safety and lost product, this functionality is obligatory for compliance with environmental standards mandated by federal and state oversight bodies, such as the California State Water Resources Control Board (SWRCB). The SWRCB demands a testing procedure that includes conditions as close to operational as possible, while still using environmentally safe gases as a test fluid. Although the test parameters (e.g., pressure) are allowed to deviate from operating conditions in order to facilitate the test procedure, a prescribed rescaling of the test thresholds must then be applied to account for the deviation. Whether the test is run at operation conditions or in a slightly different parameter regime, the fact that the testing must be done on the product and return lines after installation at a service station presents significant challenges in devising an effective test strategy

    Scalable Data Parallel Algorithms for Texture Synthesis and Compression using Gibbs Random Fields

    Get PDF
    This paper introduces scalable data parallel algorithms for image processing. Focusing on Gibbs and Markov Random Field model representation for textures, we present parallel algorithms for texture synthesis, compression, and maximum likelihood parameter estimation, currently implemented on Thinking Machines CM-2 and CM-5. Use of fine-grained, data parallel processing techniques yields real-time algorithms for texture synthesis and compression that are substantially faster than the previously known sequential implementations. Although current implementations are on Connection Machines, the methodology presented here enables machine independent scalable algorithms for a number of problems in image processing and analysis. (Also cross-referenced as UMIACS-TR-93-80.
    corecore