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ABSTRACT 
 

Femoral head sliding within the acetabular cup does occur in THA.  Since it is 

known that impact conditions can lead to component ringing, the present study 

investigates the vibrational response of variable bearing surface materials.  A further 

understanding of the physical response resulting from impact during femoral head sliding 

may lead to valuable insight pertaining to THA failure.   

Accelerometers were mounted to synthetic bones which had been implanted with 

hip prostheses.  Data was collected from these sensors as a machine impacted the femoral 

head into the acetabular cup.  These tests were carried out for metal-metal, ceramic-

ceramic, and metal-polyethylene bearing surfaces at varying loads. 

Contrary to the non impact condition, when hip separation was simulated leading 

to impact conditions, the frequency magnitudes were significantly increased.  The results 

from this study revealed that the amplitude and range of vibration is dramatically 

increased when the femoral head is separated from the acetabular cup under impact 

conditions.  The ceramic-ceramic material experienced the largest magnitude of 

frequency.  The vibration caused by the ringing of components in the THA system has 

the potential to damage both prosthetic components as well as the area of the bone in 

contact with them.  If the dominant frequencies seen during the testing for this study were 

to coincide with the resonant frequency of the bone at the implant/bone interface, then 

damage and degradation becomes much more likely, with the ultimate possibility of 

loosening and failure.   
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CHAPTER I 

INTRODUCTION  

1.1  Problem: 

 In 1999, there were more than 200,000 THA’s performed in the U.S. (AAOS, 

2003).  Since 1994, revisions have accounted for 17% of the THA’s in the US (Wright et 

al., 2000).  The average cost of the initial THA procedure is around $26,000 while the 

cost of a THA revision averages approximately $32,000.  These factors combine for a 

total cost of $4.2 billion annually in the US.  In addition to the cost, the average hospital 

stay for a primary THA is 5 days while a revision THA is 6.5 days (Fiedler, et al., 2003). 

Many complications cause the need for a revision including infection, aseptic 

loosening, dislocation, osteolysis from loosening, and fracture (Fiedler, et al., 2003).  The 

most serious of these common complications is loosening (Georgiou, et al., 2001).  A 10 

year, post surgery follow-up study reported that an estimated 0-7% of THA femoral 

components and 22-29% of acetabular components become loose (Georgiou, et al., 

2001).  The two primary types of implant loosening are septic loosening and aseptic 

loosening.  Septic loosening is caused by an infection at the tissue surrounding the hip 

replacement.  Aseptic loosening is caused by factors that aren’t related to an infection. 

Aseptic loosening in THA’s is reportedly as high as 14% in the US (Sharp et al., 

1985).  Many reasons for this figure have been investigated including foreign body 

reaction to wear particles, body enzymes, and sensitivity to implant motions (Krischak et 

al., 2003).  Implant stability is also dependent on the biomechanical properties of the 
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bone it to which it is affixed and the amount of bone in contact with the implant 

(Meredith et al., 1997).  Other factors that may contribute to implant loosening are a lack 

of bony in-growth on the porous implant surfaces and possible surgeon error.  One 

possible cause of aseptic loosening that has yet to be investigated in depth is vibration of 

the bones and implant components. 

1.2 Proposed Investigation: 

 Dennis et al. (2001) reported that the femoral head separated from the acetabular 

cup during gait at least 1 mm through “In vivo” 3-D model fitting process.  When these 

components come back together, it was hypothesized that an impulse was generated at 

impact.  As with any impact, the energy is dissipated in one of a variety of ways.  A 

primary way in which energy can be dissipated in an impact is through vibration.  When 

a system undergoes free vibration, it will vibrate at a natural frequency.  If the excitation 

frequency coincides with the natural frequency, large oscillations may develop.  This 

condition is called resonance and can result in dangerously large oscillations (Thomson, 

1988), which can result in damage to the system.  The possibility exists that the vibration 

from component impact during gait could cause resonance within the THA and cause 

damage to either the implant components or to the bone.  Therefore, it was the purpose of 

this study to investigate the natural frequencies of all the components of a THA system 

and to measure the vibration frequencies and magnitudes that occur in the system after 

impact during gait.  These data can then be examined to determine whether vibration 

within the THA system from impact loading has the potential to cause aseptic loosening 

at the implant/bone interface. 
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CHAPTER II 

BACKGROUND 

2.1 Anatomy: 

 In order to understand the terminology in this thesis, the basic anatomy involved 

must be understood.  For the purposes of this study, only bony landmarks on the pelvis 

(Figure 1) and femur (Figure 2) are needed. 

 

 

 

 

 
 

Figure 1. Anatomy of the Pelvis 
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Figure 2. Anatomy of the Femur 
 
 
 

2.2 Total Hip Arthroplasty: 

 Total hip arthroplasty is the name of the procedure undertaken when a natural hip 

is replaced by a synthetic prosthetic hip.   THA is an invasive procedure which must be 

carefully considered before being undertaken.  The main criteria used by physicians when 

determining if THA is appropriate for a particular patient follow (Fiedler, et al., 2003): 

1. There should be radiographic evidence of joint damage. 

2. There should be persistent pain causing a disability. 

3. The persistent pain cannot be fixed by non-surgical treatments. 

4. The goals after replacement are realistic and attainable. 

Several techniques exist for this surgery including the posterior approach with an incision 

in the rear and the lateral approach with an incision on the side (Fiedler, et al., 2003).  

Overall for THA’s, 90% of those who undergo the procedure report a decrease in limp, 
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become independent of assist devices and regain significant strength in their hip 

musculature (Towheed, et al., 1996). 

 The earliest known attempt at performing a THA came in 1822 (Klenerman, et 

al., 2002; Paavolainen, et al., 2002).  In the 1950’s PMMA was introduced as a cement 

for THA.  Sir John Charnley was credited with inventing the low friction hip replacement 

in the early 1960’s and developed many surgical techniques that paved the way for 

today’s orthopedic surgeons.  Modern THA techniques were introduced in the 1940’s, 

and the use of modern THA materials dates back to the 1960’s.  Today, there are 

numerous types of hip implants on the market.  For example, as of 1995 there were over 

62 different types of hip prostheses made by 19 companies in England alone (Fiedler, et 

al., 2003).  Most of these hip implants vary in design, size and material but contain the 

same components.  An acetabular cup is placed in the acetabulum which has been reamed 

out by the surgeon.  The acetabular cup is affixed by either bone cement or by notches or 

grooves which allow it to rest securely in the acetabulum.  Within this cup is placed the 

acetabular liner.  The liner is the bearing surface for the implant at the pelvis and can be 

made of a variety of materials, usually polyethylene, metal, or ceramic.  The femoral 

stem is put inside the superior end of the femur where the femoral head has been cut off 

by the surgeon.  This stem is affixed by either cement or by grooves like the acetabular 

cup.  Attached to the stem on the femur is the femoral head which is the bearing surface 

of the femur in the hip.  The femoral head is usually made of either ceramic or metal. 

The criteria used when designing a hip implant include (Callaghan et al., 1995):  

1. The implant must be able to provide appropriate control of joint movement. 

2. The components must be capable of transferring large loads to the bones. 
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3. The implant must be capable of providing long term and permanent fixation. 

While much time, effort, and money go into the design of these implants, they do not last 

indefinitely within the body.  The material used for the implant, the size of the femoral 

head, and the overall design affect such factors as the surgical technique used, the amount 

of wear the implant undergoes, the likelihood of complication, and the survival rate of the 

implant itself. 

 At present, according to follow-up studies, metal on polyethylene (MOP) hip 

implants have been most successful of the THA implant materials currently in use.  The 

MOP serves as the baseline for success of other materials (Fiedler et al., 2003 ).  THA’s 

have been made from ultra high molecular weight polyethylene (UHMWPE) for more 

than 30 years.  Fatigue of the UHMWPE is a concern in the MOP prosthesis as well as 

the existence of wear particles that potentially could cause aseptic loosening (Fiedler et 

al., 2003). Overall the MOP implant has an 80%-90% survival rate after 25 to 30 years of 

use in older patients (Berry, et al., 2002a; Berry, et al., 2002b). 

 Metal on metal (MOM) implants have been in use the second longest next to 

MOP implants.  MOM exhibits less wear than the MOP.  However, some concerns of the 

MOM are metal-loosening, unknown carcinogenicity, and patient sensitivity to metal 

particles.  MOM has an aseptic loosening rate of 0.9% to 11.9% per year and exhibits a 

72% to 91% survival rate in 10 to 15 year follow-up studies (Fiedler, et al., 2003). 

 Ceramic on ceramic (COC) implants were introduced in the 1970’s but were 

taken off the market due to unacceptably high wear rate and fracture risk (Fiedler, et al., 

2003).  A newer, more reliable version of the COC implant has been implemented in 

Europe since 1990 and gained FDA approval in the US in 2003.  The COC fracture rate 
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before the introduction of the new implant was approximately 13.4% but was reduced to 

less than 1% afterward (Willmann, et al., 2000; Jazrawi, et al., 1998).  More recent COC 

implant designs exhibit a wear rate of 0.003 mm/year, which is lower than MOP by a 

factor of ten.    

2.3 Biomechanics of the Hip: 

 Published data on the forces occurring at the hip vary.  Some researchers believe 

that the forces acting on the hip not only act vertically during gait but also in the lateral 

and ventral directions (Rydell, 1966).  The direction of the force is also believed to 

change as the femur moves (Rydell, 1966), and some hip loci studies show that the 

position of the femoral head in the acetabular cup moves as well (Dennis, et al., 2001).   

Determination of the forces occurring at the hip can occur either through mathematical 

modeling or through the use of a telemetry prosthesis.   

Two main approaches are used for modeling: (1) Optimization techniques that 

allow for more unknowns than equations of motion and (2) Reduction methods that 

ensure that the system of equations is determinant.  The muscles can be included, the 

mechanical properties of the tissue in the joint can be varied and the mathematical 

method used to determine the value can vary.  The primary methods of mathematical 

modeling of forces in the hip are FEM, classical Newtonian dynamics, and Kane’s 

method of dynamics.  Data from these various modeling methods range from 2.3 to 6.9 

times body weight. (Brand, et al., 1982, 1994; Crowninshield, 1978; Hardt, 1978; 

Hurwitz, et al., 2003; Komistek, et al., 1998; Morrison, 1968, 1970; Paul, 1965, 1976; 

Seireg and Arvikar 1973).  
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Telemetry involves the use of placing instrumentation within a prosthesis such as 

accelerometers, force transducers, torque sensors or temperature sensing devices.  The 

force values read by these prosthesis range from 2.3 to 3.2 times BW (Bergmann, et al., 

1993, 1997, 2001; Davy et al., 1988; Kotzar et al., 1991; Rydell, 1966; Taylor, et al., 

1994, 2001).  Mathematical modeling tends to have larger magnitudes due to assumptions 

and various optimizations schemes.   

The maximum force found for running varies between five times body weight and 

three times body weight (Rydell, 1966; Taylor, et al., 2001).  Stair descending maximum 

forces vary between 2.6 and 3.1 times body weight (Taylor, et al., 2001; Bergmann, et al., 

2001).  In addition to the forces on the hip while the foot is in contact with the ground, 

Hodge et al. (1986) report an instrumented hip transducer reading of -0.13 MPa during 

swing phase.  Based on the orientation of this transducer in the prosthesis and the 

negative value of the force reading, separation of the femoral head from the acetabular 

cup during swing phase is a strong possibility.   

2.4 Detection of Loosening: 

 Some of the major factors that can influence the loosening of a hip implant are 

prosthesis design, skill of the surgeon, sex of the patient, and whether or not the patient 

has arthritis (Fiedler, et al., 2003).  For cementless hip implant designs, signs of 

loosening can include thigh pain and the inability to lift the leg (Fiedler, et al., 2003).  In 

order to prevent the trouble and pain associated with implant loosening, it is important to 

catch loosening early. 
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 The most accurate method for determining prosthesis loosening is through pull 

and push out tests (Johansson, et al., 1987).  However, this method requires sacrifice of 

the implant and is, therefore, of little diagnostic use.  Digital subtraction, arthography, 

and scintography are also used.  However, arthography, the most accurate of these 

methods, is invasive and poses a risk to the patient (Rosenstein, et al., 1989).  

Radiography is the most common method used for detecting implant loosening because it 

is accurate and non-invasive (Merideth, et al., 1997).  The major drawback with 

radiography is that it can’t measure changes in the bone structure, only relative changes 

in the marginal bone height (Merideth, et al., 1997).  Researchers have shown that 

measuring the resonant frequency of the bone can be used to monitor the stability of an 

implant (Meredith, et al., 1996; Li, et al., 1996; Rasmusson, et al., 1999; Georgiou, et al., 

2001).  The method can be used to detect changes in the stiffness of an implant and the 

surrounding tissue.  While still in its infancy, this method has proven to be 20% more 

sensitive to detecting implant loosening than the use of radiographs in situations where 

such tests are viable (Georgiou, et al., 2001). 

2.5 Frequency Ranges: 

 Many studies have investigated the vibratory properties of long bones.  A variety 

of methods have been used, yielding a variety of results for the resonance frequency.  Of 

particular interest to this study are the resonant frequencies of the femur.   

Campbell and Jurist (1971) used the shaker method to find the resonance of an 

excised human femur, after removal of a small wedge of bone from the neck, after 

removal of the femoral head, and after re-attachment of the femoral head.  While the 
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reactance of the intact femur was the largest, all four of the tests had a peak somewhere 

between 750 and 800 Hz.  Thomas et al. (1990) also used the shaker method with an 

excised human femur with both ends fixed.  They found that when the end load was 

varied, the resonance of the femur varied between 138 and 177 Hz.  They concluded that 

axial compression may affect the stiffness of bone and, thereby, affect the resonant 

frequency.   They also reported when the femur was tested under THA conditions by 

removing the femoral head, reaming the shaft, and freeing the upper end, that no 

resonance peaks were visible.  Based on this data, their conclusion was that there was no 

risk of inducing harmful resonances in bone during THA because the femur has no 

resonances. Khalil et al. (1981) used the impulse response method to find resonances in 

several vibrational modes of the femur.  These frequencies varied between 250 and 879 

Hz.   Couteau et al. (1998a), Couteau et al. (1998b), compared their experimental femoral 

resonance frequencies found from impact hammer testing with a finite element model of 

the femur that they developed.  These comparisons were carried out for both the normal 

femur and the implanted femur.  The normal experimental results varied between 202 Hz 

and 932 Hz while the implanted experimental results varied between 278 Hz and 832 Hz.  

The normal numerical results varied between 288 Hz and 924 Hz while the implanted 

numerical results varied between 264 Hz and 780 Hz.  The decrease in resonant 

frequency between non-implanted and implanted femurs is due to the increase in mass.  

Rosenstein et al. (1989) studied the resonances of normal femurs, securely implanted 

femurs, and loosely implanted femurs using the shaker method.  They found the resonant 

frequency of the normal femur varied between 220 Hz and 375 Hz.   The firmly 

implanted femur had a resonant frequency range of 230 Hz to 325 Hz.  The loose  
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Table 1. Comparison of Femoral Resonance Frequencies from Different Studies 
 

 

implanted femur exhibited distorted signals and superimposed peaks within tens of Hz of 

the resonant frequency.   Taylor et al. (2002) used modal analysis and a finite element 

model to determine femoral resonant frequencies.  Their frequencies ranged from 285 Hz 

to 710 Hz.  Overall, the reported values for the femur resonances vary significantly 

between the six studies (table 1). 

2.6 Factors Influencing Frequency: 

 A number of physiological factors can affect resonant frequency measurements of 

long bones.  When measuring fractured long bones over the duration of the healing 

period, the resonant frequency increases as the bone heals (Markey, et al., 1974; 

Shagaldi, et al, 1997).  Osteoporosis and diabetes affect the resonant frequency of long 

bones by decreasing it (Jurist, 1970a; Jurist, et al., 1969).  Age tends to by another factor 

influencing bone resonant frequency.  Between the ages of 6 and 55, long bone resonant 

frequency decreases steadily in females (Jurist, 1970a). 

 The effect of skin, ligaments, tendons, and muscle on the resonant frequency 

measurement of long bones varies in the literature.  Some scientists report that skin and 

other soft tissues can damp out long bone vibration (Nokes, et al., 1984; Nakatsuchi, et 

al., 1996).  Other researchers say that skin has a modest effect on long bone frequencies 

Campbell Khalil

Exp. FEM Exp. FEM
Mode 1 (or 
range) 138-177 750-800 None 250 301.6 287.8 278 264 220-375 230-325 285 285
Mode 2 315 353.3 364.2 330 324 317 324
Mode 3 825 886.6 819 758 693 521 489
Mode 4 879 961.6 931.9 832 780 777 710

Normal Implanted Exp. FEM

Normal Implanted

Exp.Exp.   Normal For THA

TaylorRosensteinThomas Couteau
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(Tsuchikane, et al., 1995).  Yet some say that skin and soft tissue can affect the resonant 

frequency of a long bone but don’t affect the ability to take acceleration measurements 

(Rosenstein, et al., 1989; Nokes, et al., 1988).   Muscle mass affects resonant frequency 

(Denecker, 1968), and the resonant frequency of long bones gradually increases as 

muscles are removed from the joint (Tsuchikane, et al., 1995).  Preloading the recording 

accelerometers in proportion to the soft tissue thickness allows soft tissue effects to be 

overcome (Nokes, et al., 1984; Nokes, et al., 1988; Nakatsuchi, et al., 1996).  In one 

study the investigators claimed the measurement of some subjects was impossible due to 

constant muscular tension (Van Der Perre, et al., 1996). 

 Factors of the experiment itself can have an affect on the resonant frequency 

measurement.  Measuring resonant frequency directly and by collecting the data and 

running an FFT give different frequency values (Nokes, et al., 1984).  Slight changes in 

forearm and hand position created significantly different results in a study investigating 

the resonant frequency of the ulna (Jurist, et al., 1970b).  In that same study, the 

researchers determined that accelerometer location and accelerometer tightness also 

affected the natural frequency measurement.  They also determined that there was up to a 

7% change in resonance frequency from day to day.  In another study investigators 

dispute the idea that accelerometer placement has any effect (Christensen, 1982).  Some 

researchers found significant differences in the resonant frequencies between different 

specimens (Rosenstein, et al., 1989). 

 The stiffness of the tissue surrounding the implant as well as the height of the 

implant left exposed also has an affect on the resonance (Nokes, et al., 1984; Shagaldi, et 

al, 1997; Lowet, et al., 1993).  Along these same lines, loosening of an implant has a 
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significant effect on the frequency of the bone (Li, et al., 1996; Rosenstein, et al., 1989).  

In one study (Li, et al., 1996) there were never more than two resonances found.  A 

significant change in natural frequency was exhibited for bones with and without 

implants (Rosenstein, et al., 1989; Couteau, et al., 1998).  Chung et al. (1979) reported 

that there was a significant change in the resonant frequency of a bone during the curing 

of bone cement. 

2.7 Methods of Measuring Vibration: 

 The first known use of vibration in orthopaedics came in 1932 when a doctor 

monitored the healing progress of fractured bones by tapping on them and listening to the 

response with a stethoscope (Nokes, et al., 1988; Lippmann, 1932).  Since then, many 

methods of measuring the vibratory properties of bone have been developed both 

experimentally and theoretically. 

 Accelerometers can be used to measure vibration in through one of two main 

techniques .  In one method, they are mounted on the object to be measured, and the 

object is then impacted.  This is called the impulse response method, and the excited 

frequencies exhibited are called the natural frequencies (Christensen, et al., 1986; Nokes, 

et al., 1988, Couteau, et al., 1998a; Couteau et al., 1998b).   The object can also be 

excited by a specific external frequency or set of frequencies.  This concept is called bone 

resonance analysis, and the stimulus usually comes from a mechanical shaker, vibrator or 

speaker (Georgiou, et al., 2001; Campbell, et al., 1971; Thomas, et al., 1991; Nokes, et 

al., 1988).  Sometimes, when a particular frequency range is of interest, a microphone can 

be used in these tests instead of an accelerometer (Lowet, et al., 1993).  Overall, the 
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impulse response method requires less time and is simpler than the shaker method and is 

therefore preferable (Nakatsuchi, et al., 1996).   

 There are a wide variety of other experimental methods used to determine the 

vibratory properties of bone as well.  In 1970 Brash and Skorecki determined that a 

traveling microscope could be used to establish resonance modes that were higher than 

the fundamental frequency because damping prevents high dynamic magnification.  In 

another study, researchers concluded that the electric charge accompanying a stress in a 

bone can be detected by electromagnetic sensors due to bone’s piezoelectric nature (Saha, 

et al., 1977).  Strain gauges have also been used to measure vibratory properties (Pelker, 

et al., 1983).  Changes in sonic wave propogation indicating resonant frequency have also 

been used via ultrasound testing (Van Der Perre, et al., 1996).  One of the most accurate 

methods was carried out by Matthews et al.(Sonstegard, et al., 1976).  They eliminated 

error due to soft tissue effects for in vivo measurements by placing an accelerometer 

directly on the bone using a needle.  The obvious drawback to this method, however, is 

its invasive nature and finding subjects willing to undergo the procedure. 

 Experimental factors other than the method of determining resonance are also 

varied through the literature.  Some experiments simulated soft tissue by wrapping the 

bone in wet cotton material (Thomas, et al., 1991).  The location of the accelerometer 

placement also varied in many of those tests, varying from the femoral shaft to the greater 

trochanter (Thomas, et al., 1991).  Some tests attempted to measure in vivo resonances by 

placing the accelerometer on a spot close to the bone such as can be found with the tibia 

at the medial malleolus (Markey, et al., 1974), while some measured with accelerometer 

directly on the skin, yet some just measured the vibration properties directly on the bone.  
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Some conditions on the bone such as loading and limiting mobility, attachment by pins, 

or resting the bone on a sponge were also a factor (Thomas, et al., 1991; Christensen, et 

al., 1986; Nokes, et al., 1988; Jurist, et al., 1973). 

 Many experimental results are found in order to verify the results of a theoretical 

model.  There are many types of numerical ways to determine resonances in bone.  Some 

of the earliest methods involve an oversimplification of the bone using a beam model to 

simulate its behavior (Lowet, et al., 1993).  A slightly more advanced study modeled 

bone as a uniform cylindrical tube (Jurist, et al., 1973).  The most advanced and accurate 

method of numerical modeling used to measure resonances is finite element modeling 

(FEM) (Orne, et al., 1976; Nokes, et al., 1984; Couteau, et al., 1998; Van Der Perre, et 

al., 1983).  In this type of modeling, a model of the bone is created using CT images and 

placed into a FEM program for analysis (Couteau, et al., 1998).  FEM analyses give 

similar results as those found in experimental methods and can have an error as low as 

5% when compared to the experimental results.  Numerical determination has advantages 

in that once a particular model is validated, testing and material parameters can be easily 

changed in order to simulate different situations.  Also, if CT images are available for a 

large selection of subjects, many different analyses can be run without the need for actual 

human subject involvement. 

2.8 Fourier Transform and the FFT: 

 When examining accelerometer data, the original data is captured with respect to 

time.  While often useful, examining data in the frequency domain is usually necessary in 

order to achieve the best understanding of the acquired data.  The Fast Fourier transform 
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is a means of converting data signals acquired in the time domain to the frequency 

domain so that additional information can be extracted from the given data.  For discrete 

data, such as that acquired by a data acquisition card and stored on a computer for later 

analysis, there is a specific equation used to carry out the Fourier transform.  The digital 

Fourier transform series is defined by (Inman, 2004): 
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2.9 Power Spectral Density and Periodogram Analysis: 

In our analysis we used the periodogram method which used windowing and 

averaging to reduce the effect of noise in the analysis. The power spectral density is one 

of the methods that is used to average complex signals.  There are two primary 
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approaches for estimating the power spectrum of a signal.  The first of these approaches 

is the periodogram analysis that is used to find the PSD of a signal based on the Fourier 

Transform of the finite length signal.  The second method which is a more advanced 

method and not used in this study involves estimating the auto-covariance sequence and 

then computing the Fourier Transform based on this auto-covariance sequence.  The 

periodogram analysis is most appropriate for the purposes of this study because it based 

directly on the FFT of the sample.  The values of the PSD at specific frequencies are 

given by (Oppenheim, 1999): 

2|][|1)( kV
LU

I k =ω  

This equation means that in order to find the PSD at a particular frequency, ωk, you must 

square the value of the discrete fourier transform (DFT) at that frequency, V[k], and then 

multiply by one over LU.  L is the window length of the sample and U is a normalization 

constant used to remove bias in the spectral estimate. U=1 is maximum normalization but 

depending on the particular data window being used it can range anywhere between 

0<U<1. 

2.10 Data Filtering: 

 In digital signal processing, there are times when the researcher knows that 

certain frequencies are unwanted and/or the researcher is limited by the hardware that is 

used.  For situations such as these, a digital filter is often very desirable.  There are two 

types of digital filtering techniques, finite impulse response (FIR) and infinite impulse 
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response (IIR), both of which have unique advantages and disadvantages in a given 

application. 

 IIR filters can be more beneficial because they use less calculation and memory 

than a similar FIR filter. However IIR filters have a number of drawbacks compared to 

the FIR filter.  They are more susceptible to noise and arithmetic error.  IIR filters are 

slower to implement through the use of fixed point arithmetic.  They don’t offer the 

computational advantages that FIR filters do regarding decimation and interpolation. 

 FIR filters have a number of advantages over their IIR counterparts.  FIR filters 

can easily be designed to be linear phase so that phase is not distorted.  Implementation 

of an FIR filter is relatively simple and appropriate for use in situations involving 

decimation and interpolation.  It is important to note that FIR filters are not feedback 

filters, so fewer mathematical problems arise in the design of an FIR filter and the 

coefficients of the FIR filter can be less than one. 

The Butterworth filter is one of the most commonly used digital filters.  The filter 

has the following transfer function (Roberts, 2004): 
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Here,  ω is the frequency of interest and ωc is the cutoff frequency of the filter.  The order 

of the filter is determined by the desired parameters for the filters and is represented by n 

in the above equation. 
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2.11 Aliasing: 

 Shifted versions of the original frequency spectrum that show up at integer 

multiples of the data sampling rate are called aliases because they look like the original 

spectrum but appear in a different place (Roberts, 2004).  Aliasing is a problem that can 

occur when acquiring and analyzing data.  Essentially, parts of frequencies higher than 

what is being analyzed show up as errant spikes in the FFT or PSD.  This can cause 

problems because knowing which frequency peaks are caused by actual data and which 

are caused by aliasing can be difficult, if not impossible.  Two precautions need to be 

taken in order to ensure that aliasing does not occur when acquiring data digitally. First of 

all, a hardware low-pass filter needs to be implemented into the system.  The filter should 

block out all frequencies above the maximum frequency of interest or the Nyquist rate.  

This helps ensure that any data at frequencies larger than the Nyquist rate does not get 

recorded during data acquisition.  Second, the data should be sampled at a sampling rate 

of at least twice the Nyquist rate or highest frequency of interest.  If the highest frequency 

of interested was 10 kHz, then the data would have to be sampled at no less than 20,000 

samples per second. 
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CHAPTER III 

MATERIALS AND METHODS 
 

3.1 Data Acquisition Setup: 

The first step of carrying out this project was determining how vibration data 

would be collected and analyzed.  A decision was made that acquiring vibration data in 

three dimensions would be most beneficial.  Vibration characteristics at different places 

of the bone/implant system would have to be analyzed.  It was finally decided that the 

number of locations to be analyzed would be four: on the acetabular cup, on the pubis 

directly behind the center of the acetabulum, on the femoral stem, and on the greater 

trochanter of the femur.  Because tri-axial accelerometers were to be used, a data 

acquisition system allowing for acquisition of at least 12 channels would be necessary. 

3.1.1 Accelerometers: 

 An accelerometer is an instrument used to convert mechanical motion into 

voltage.  There are many types of accelerometers, and one of the most common types is 

piezoelectric (figure 3).  A piezoelectric material is one which creates an electric charge 

when compressed or bent.  Some of the most common piezoelectric materials are quartz 

and barium titanate (Thomson,1988).  There are two main ways to quantify the sensitivity 

of a piezoelectric crystal, and they are to either measure the charge per g (pC/g) or 

voltage per g (mV/g).  The accelerometers used for this study had a sensitivity of 

approximately 10 mV/g. 
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Figure 3.  Schematic of Typical Piezoelectric Accelerometer 

 
Accelerometers for this study had to meet several criteria.  They had to be tri-axial, small 

enough to attach to the system without adversely affecting the system dynamics, and 

capable of measuring vibration up to 10,000 Hz.  The accelerometers chosen were four 

PCB 356A11 piezoelectric tri-axial accelerometers (figure 4).  These accelerometers 

measured from two to 7,000 Hz on the x-axis and from two to 10,000 Hz on the y and z 

axes.  The size of the sensors was 0.25 inches cubed.  After initial testing, two of these 

sensors wore out and had to be replaced.  Due to the fact that the 356All was no longer 

made, they were replaced with two PCB HT356B11 piezoelectric tri-axial 

accelerometers.  The specifications for the HT356B11 accelerometers were identical to 

that of the 356All accelerometers except the HT356B11 was capable of being used in 

environments of extreme temperature.   
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Figure 4.  Tri-axial Accelerometer Used for Measurement, Compared with Penny to Demonstrate Scale 
 

Each of the accelerometers had an integrated cable which ended in a ¼-28 four pin jack.  

A shielded cable was then connected to this jack (cable #: 034G05) which terminated 

with one female BNC connector for each of the three channels.   

3.1.2 Signal Conditioner: 

A PCB 583 series 16 channel signal conditioner was chosen to condition the signals from 

the accelerometers (figure 5). The signals could be input to the conditioner by using 

either BNC connectors for each channel or a single 37 pin cable.  The BNC connectors 

from each accelerometer were connected directly to the signal conditioner.  The same 

options existed for the output signal from the signal conditioner.  It was decided that a 37 

pin cable would be used for the output from the signal conditioner to the connector block.  

Therefore, a surplus female 37 pin cable was located and implanted.  Since the output 

connector on the signal conditioner was female, a female to male adapter was used. 

Unfortunately, the cable was no longer mass produced and was, therefore, difficult to 

find.   
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Figure 5.  PCB 583 16 Channel Signal Conditioner 
 
 

3.1.3 Connector Block: 

 In order to connect the output of the signal conditioner to the data acquisition 

card, it was necessary to use a connector block.  A National Instruments SCB-68 68-pin 

shielded connector block was chosen (figure 6).  In order to connect the 37 pin cable to 

the connector block, some modifications had to be made.  The 37 pin connector on the 

cable was removed and the insulation was stripped from the main cable and each of the 

smaller wires contained within it.  The wire which corresponded to each pin had to be 

identified due to a lack of cable and instrumentation documentation.  This was done by 

connecting one of the accelerometers to a PCB 394C06 calibration shaker along its z-

axis.  This shaker provided excitation at 1 g RMS at a frequency of 159.2 Hz.  The wire 

corresponding to the z-axis was connected to the signal conditioner.  All of the wires 

from the 37 pin cable were laid out on a counter surface and taped separately to the 

surface so that none of the wires touched.  An oscilloscope was then used.  A positive and 

a negative lead were touched to random wires on the counter until an oscillating wave 

corresponding to the shaker excitation appeared on the oscilloscope screen.  The colors of 
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Figure 6.  NI SCB-68 Block Connector Configuration Used in Testing 
 
 
these wires were written down and then they were untaped from the counter and 

separated from the other wires.  The channel on the signal conditioner to which the 

accelerometer was attached was then moved, and the process was repeated until it was 

known which wires corresponded to a particular channel.  All remaining wires were 

considered ground wires and treated accordingly.  The wires were connected to the block 

in a reference single ended configuration.  Each channel had a positive, negative, and 

ground wire.  Once all 16 channels of the signal conditioner had been connected to the 

connector block, the connector block was connected to the data acquisition card via 

ribbon cable.   

3.1.4 Data Acquisition Card: 

 In order to help overcome the problem of aliasing, the minimum sampling rate 

required had to be at least twice the largest frequency of interest (the Nyquist frequency).   

fsample ≥ 2 * fNyquist 

The highest frequency that the chosen accelerometers could accurately measure was 

10,000 Hz.  Therefore, the Nyquist frequency was 10,000 Hz requiring the sampling rate 

to have been at least 20,000 samples per second per channel.   
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The data acquisition card chosen for this project was a National Instruments PCI-

MIO-16E-1 card.  The card had the capability of sampling at a rate of up to 1.25 Mega-

samples/second.  This translates to up to 78,000 samples per second per channel for a 16 

channel system.  This was well above the minimum sampling rate required for this study.  

Due to acquired data file size as well as questions regarding the ability of the computer to 

write data to disk quickly enough, it was decided that the sampling rate would remain at 

20,000 Hz, knowing that the card was capable of handling such a load.   

3.1.5 Computer: 

 The computer housing the data acquisition card was a Dell desktop.  It had a 2.4 

GHz Pentium 4 processor, 1,000 Megabytes of RAM and an 80 Gigabyte hard drive.  

This machine also had a DVD burner for the purposes of transferring large amounts of 

data quickly.  The computer was used to control the data acquisition system as well as 

store the data (figure 7). 

 

Figure 7.  Block Diagram of Data Acquisition System 
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3.1.6 Initial Channel Setup: 

 Once the hardware was set up, the software had to be configured so that the data 

acquired would be accurate.  The card was calibrated according to the specifications 

outlined in the instructions that came with it.  Once calibration had been completed, the 

NI Measurement and Automation explorer was used to configure each channel coming 

into the card.  The data coming into the card was from a SCB-68 68-pin shielded 

connector block and there were 16 channels.  Sixteen channels were configured initially 

so that if another channel had to be used later, adding the device to the original twelve 

channels would be relatively simple.  It was indicated that each of the channels was also 

in the referenced single ended configuration.  Individual global channels were then set up 

for each channel.  The setup specified that the incoming signals were from piezoelectric 

accelerometers, and the calibration data provided by the manufacturer for each 

accelerometer channel was input into the NI software.  This included information such as 

measurement range and calibrated sensitivity.  This process also meant that the acquired 

data was written to file in the appropriate units, and no conversion was needed from volts 

to acceleration.  

3.1.7 Initial Channel Testing: 

 In order to observe the signals coming into the card, a simple program was written 

using Labview version 7.0 (National Instruments Corporation, Austin, TX).  This 

program merely took the signals seen by the card and plotted them on a moving graph in 

real time like an oscilloscope.  This program graphed all twelve accelerometer channels 

simultaneously.  The accelerometers were then tapped on their different axes to make 
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sure that the signal corresponded to the appropriate channel.  Once it was clear that 

tapping a specific accelerometer on a specific axis caused the signal on its corresponding 

channel to move, the signs of the channels had to be tested.  A sign convention was 

established stating that the positive N3> axis was the direction pointing perpendicular to 

and away from the accelerometer mounting surface.  The N1> and N2> axes were then 

chosen based on the right hand rule and the corresponding markings that existed on the 

accelerometer from the manufacturer where N1> corresponded with the x-axis and N2> 

corresponded with the y-axis.  The accelerometers were tapped in the positive direction 

of a particular axis, and it was expected that the observed signal should be a positive 

spike.  If the spike was negative, then the positive and negative wires were switched in 

the connector block, and the test was run again.  The same test was carried out in the 

negative direction for each axis to make sure that the opposite case was also true.  Once 

all the channels responded as anticipated, a simple impact test was developed to further 

test the setup. 

3.1.8 Initial Impact Tests: 

 In order to further verify that the data acquisition setup was working properly, 

some early impact tests were conducted.  In order to do this, another Labview program 

had to be created.  This time, one of the sample programs that came with Labview was 

used and modified for the purposes of this project.  This program allowed the user to 

establish which channels to acquire, the scanning rate for each channel, and the size of 

the cache so that the computer could store the information to hard disk, without error. 

The program wrote the data to disk in a tab delimited text file format in which each  
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Figure 8.  Testing apparatus used to verify accelerometer signals 
 
 
channel was a separate column.  For the purposes of this test, the 12 accelerometer 

channels were acquired at a rate of 20,000 Hz. 

 The actual initial impact test involved a simple device where the accelerometers 

were fixated to a piece of wood and impacted with a second wooden structure that was 

secured to the counter top (figure 8).  Two accelerometers were placed on the piece of 

wood in the same orientation on opposite sides.  The other two accelerometers were 

placed on the apparatus in the same orientation as the wood piece on opposite sides of the 

apparatus.  Once the data acquisition program was running, the wood piece was used to 

tap the apparatus.  Our intention was to ensure that the vertical axes of the wood piece 

and the apparatus have equal and opposite values.   

3.2 Experimental Setup: 

3.2.1 Bones: 

 Ideally this study would have been conducted with actual fresh cadaver bones in 

order to get a better idea of the vibratory properties of the implants and bones in vivo.   
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However, due to the impracticality of acquiring cadaver hips and using them in a timely 

fashion, it was decided that this study would be conducted using lifelike synthetic human 

bones.  The bones chosen for this project were third generation composite bones 

(Sawbones) (figure 9).  These bones were created to be as mechanically similar to actual 

human bone as possible (table 2) and designed for biomechanical testing purposes 

(Heiner et. al., 2001).  The size of the bones used for this project was large, and all bones 

were representative of the left side of the body.   

3.2.2 Implants: 

 All of the implants for this study were donated by DePuy Orthapaedics, Inc., a 

Johnson and Johnson Company.  In order to test the components under impact conditions 

as well as to test the individual components without any sort of loading, two sets of each 

type of hip system were needed.  Six Pinnacle™ 100 54 mm acetabular cups, and 6 

Summit™ cemented size 3 femoral stems were donated.  Four 28 mm Articul/Eze 

metal on metal femoral heads, and two 28 mm Biolox Delta Articul/Eze ceramic 

femoral heads were also given for the study.  In addition, two 54 mm Biolox Delta 

Ceramax ceramic acetabular cup inserts, two 54 mm Ultamet metal inserts, and two 

54 mm Pinnacle Marathon polyethylene inserts were contributed.  Besides the 

donated implants, one set of DePuy implants previously supplied for another study was 

used for testing the system in a trial implanted pelvis and femur.     
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Table 2.  Mechanical Properties of Simulated Cortical Bone (E-glass-filled Epoxy) and Simulated 
Cancellous Bone (Rigid Polyurethane Bone) (Reproduced from www.sawbones.com) 

 

Density 
(g/cc)

Strength 
(MPa)

Modulus 
(MPa)

Strength 
(MPa)

Modulus 
(MPa)

1.7 90 12,400 120 7,600

Simulated Cortical Bone (E-glass-filled Epoxy)
Tensile Compressive

 

Density 
(g/cc)

Strength 
(MPa)

Modulus 
(MPa)

Solid 0.27 4.8 104
Cellular 0.32 5.4 137

Simulated Cancellous Bone (Rigid Polyurethane Bone)
Compressive

 

 

 

 

 

 

 

 

 
 

Figure 9.  Third Generation Composite Sawbones used for impact testing 
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3.2.3 Implanting the Prosthetics: 

 The actual implanting of the prosthetics into the synthetic bones was carried out 

by an orthopaedic surgeon, Dr. Brian Haas (Colorado Joint Replacement, Denver, CO) 

and his operating staff.  The procedure was carried out in an operating room at Rose 

Medical Center in Denver, CO that was available for use.  Due to Dr. Haas’s availability, 

the process was carried out over the course of a day, in steps, depending on when he was 

available to work on the project.  The instruments and procedure used for implanting the 

prosthetics were as close as possible to those used during an authentic total hip 

arthroplasty in a living patient.  The femoral head was severed from the femur using a 

reciprocating saw (figure 10a).  A reamer was then used to create a hole in the cancellous 

bone large enough for the hip stem and bone cement to fit (figure 10b).  The bits of 

synthetic cancellous bone that had been loosened were dumped out.  Pieces of gauze 

were then stuffed into the hole that goes all the way through the femur along its vertical 

axis so that the bone cement to be put in later would remain in the reamed hole instead of 

flowing out of the bone.  The Endurance bone cement was then prepared.   

 

  

A. B. 
Figure 10.  A.) Using a Reciprocating Saw to Sever the Femoral Head from the Femur B.) Using a Reamer 

to Hollow Out the Inside of the Synthetic Femur 
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Figure 11.  Applying Bone Cement Used to Affix Hip Stem within the Femur 
 
 
This procedure was done by first opening the powder bag supplied in the kit with scissors 

and pouring the contents into the supplied mixing container.  The top of the ampoule of 

bone cement liquid was then torn off, and the liquid was poured into the cement mixing 

container.  The ingredients were combined in the mixing container for 45 seconds and 

then the mixing container was attached to the gun cartridge.  After 2-2 ¼ minutes from 

the start of mixing, the cement was ready to be extruded.  After being properly prepared, 

a large amount of bone cement was added to the reamed hole (figure 11), and the hip 

stem was then placed into the cement and adjusted until the orientation was correct to the 

best judgment of the physician.  The implant was then allowed to set.  This process was 

repeated three times. To make sure that all the implanted femurs were oriented in a 

similar fashion, the femoral head of each bone was cut off at an angle using the implant 

before it as a template (figure 12).  The purpose was to make the angle of the cut close in 

all four femurs.  Placing the femoral head was postponed until later because this 

procedure didn’t need to be performed by the surgeon and the excess bone cement would 

need to be cleaned from the implant using some sort of sharp implement.  The process  
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A. B. 

Figure 12.  A.) Marking a Femur Using a Previously Cut Femur as a Template B.) Cutting a Femur Using 
a Previously Cut Femur as a Template 

 
 
used for implanting the acetabular cup into the synthetic pelvis was similar to that used 

for the femur.  A set of DePuy acetabular reamers was used to gradually grind the cortical 

surface away from the pelvis (figure 13a), leaving the softer cancellous bone inside 

(figure 13b).  In order to get the bone cement to adhere, small holes were drilled in the 

cancellous bone around the acetabulum.  When the cement hardened inside these holes 

and around the implant itself, the holes would act as an anchor, keeping the implant from 

falling out under the conditions to which it would be subjected later.  More bone cement 

was prepared and placed into the reamed hole; the acetabular shell was then placed into 

the hole and oriented to the position Dr. Haas desired (figures 13c-e).   Like the femoral 

head, the placement of the acetabular cup insert was delayed until a later time because the 

surgeon’s expertise was not needed and excess cement needed to be removed from the 

cup to ensure a tight and proper fit between the cup and insert (figure 13f).   
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A.      B. 

  

C.      D. 

  

E.      F. 
Figure 13.  A.) Reaming Out the Synthetic Pelvis B.) Reamed Out Pelvis C.) Positioning of Acetabular 

Cup D.) Securing Acetabular Cup E.) Placing Acetabular Cup (drilled holes in cancellous bone can be seen 
in the lower left) F.) Removing Excess Bone Cement  
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3.2.4 Accelerometer Orientation: 

 In order to understand mounting of the accelerometers and the analyses of the 

accelerometers, the importance of accelerometer orientation must be understood for all 

tests involved in this study.  Kane’s notation (Kane, et al., 2000) is used throughout this 

text in order to reduce confusion caused by the multiple sets of axes.   For acetabular cup 

resonance tests, the cable for the accelerometer pointed toward the open end of the cup 

(Figure14).  For the femoral stem, the cable pointed away from the femoral head 180° 

(figure 15).  For the unimplanted femur, the accelerometers all faced approximately the 

same direction (figure 16).  The orientation of the accelerometers in the unimplanted 

pelvis is the same as the implanted pelvis except for the third accelerometer which is 

mounted on the superior portion of the ilium (figure 17).  All implanted component 

accelerometers are oriented the same as they are for the impact tests (figure 18). 

 

 

Figure 14.  Orientation of the Acetabular Accelerometer 
 



36 

 
Figure 15.  Orientation of the Femoral Stem Accelerometer 

 
 
 

 
Figure 16.  Orientation of Accelerometers During Normal Femur Testing 

 



37 

 

 

 

 

 

 

 

 
Figure 17.  Orientation of Accelerometers During Normal Pelvis Testing 



38 

 

Figure 18.  Orientation of Accelerometer Axes During MTS Machine Testing 
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3.2.5 Attaching the Accelerometers: 

When conducting research with accelerometers, a variety of techniques exist for 

mounting them.  It is generally considered that the more securely the accelerometer is 

attached to the mounting surface, the less interference and transient noise will be seen in 

the signal.  Based on this assumption, it was decided that the best way to mount the 

accelerometers for this study was to use a hard mount.  Mounting the sensors this way 

involved screwing them directly onto the surface of interest.  The accelerometers are 

manufactured with a 5-40 threaded hole for the purpose of mounting.  Therefore, the idea 

of mounting these involved securing a 5-40 threaded rod onto the mounting surface 

which allowed the accelerometer to be screwed onto the surface of interest. 

 Initially it was decided that the best option for attaching the metal rods to the 

bones was to screw them directly into the bones.  A 0.101 inch hole was drilled and then 

a 5-40 tap was used to thread the hole.  A metal stud was cut from a longer piece of 5-40 

stock and screwed into the hole with the help of a pair of pliers.  The accelerometer was 

then screwed onto the part of the metal stud that protruded from the bone.  This 

procedure worked for the first few times the accelerometer was attached, but the strength 

of the cortical bone the screw was using as an anchor eventually gave way, and the mount 

became loose.  Therefore, another method of fixation was necessary. 

 Due to the large amount of bone cement donated by DePuy, a decision was made 

to use bone cement to affix the accelerometers to the bones.  Bone cement is designed in 

part to mimic the physical characteristics of bone, and, therefore, it was felt that using 

bone cement for such a purpose would not change the vibratory characteristics of the 

system in a significant manner.  To prepare the bone, the same spot on all of the bones 
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was marked with a permanent marker.  A ¼-inch diameter hole was then drilled through 

the cortical bone into the cancellous bone.  A ½-inch piece of threaded stud was cut from 

a larger piece of threaded stock.  The stud was screwed into the hole in the accelerometer 

until tight by using a pair of pliers.  This process was done for three holes at a time.  Once 

three accelerometers were ready to be mounted, a batch of Endurance bone cement was 

prepared using the same instructions indicated previously.  The holes were filled with the 

cement, and then the accelerometers with the studs attached were placed in the cement.  

Care was taken to ensure the orientation for each accelerometer was the same.  C-clamps 

were then used to tightly secure the accelerometer to the bone until the cement had 

completely set.  The accelerometers were then unscrewed from the studs, and a bone with 

multiple hard mounts was left.  The bones with multiple studs were to be used later for 

component analysis.  Bones being used specifically for the impact testing received one 

hard mount, one on the greater trochanter for the femurs (figure 19b) and one on the 

pubis directly behind the center of the acetabulum for the hemi-pelvises (figure 19a).  

 

  

A. B. 
Figure 19.  A.) Accelerometer Hard Mounted on Back of the Acetabulum B.) Accelerometer Hard 

Mounted on Greater Trochanter 
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Figure 20.  Accelerometer Mount and Mounted Accelerometer on Acetabular Cup 
 
 
Drilling a hole into the implant and tapping a hole was the initial idea used for attaching 

the implant accelerometers.  For the non-implanted acetabular shells, a 0.101 inch was 

drilled into the top edge of the microsphere surface parallel to the opening of the cup.  

This hole was made as deep as possible without protruding into the inner surface of the 

cup itself.  Overall, the holes were about 1/8” deep.  These holes were then threaded 

using the 5-40 tap.  A small 5-40 stud was screwed into the hole to make sure it was 

secure, and the accelerometer was then screwed onto the stud to make sure the length of 

the stud was correct.  Then, a few drops of Loctite adhesive were placed into the hole, 

and the stud was allowed to set.  The accelerometers were then screwed back into place 

to make sure everything was still tight and oriented correctly (figure 20). 

 For the stems, the hole was drilled on the bottom of the neck of the prosthesis 

near the trunion.  However, it was determined after several failed attempts that drilling 

and tapping a hole into a piece of Cobalt-Chrome without special equipment was 

impossible.  Therefore, bone cement was once again necessary for attaching the mounts.  

As before, a metal stud was cut from a larger piece of 5-40 stock and screwed into the 

accelerometer.  A flat horizontal surface with notched a hole is located on the top of the 

Summit™ stems, before the neck begins to protrude. The purpose of this hole is to  
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Figure 21.  Mounting Stud Placement on Femoral Stem 
 
 
provide a place for the surgeon to apply instrumentation with the purpose of adjusting the 

location of the implant during surgery.  Since there was no longer a need for this hole, it 

was convenient to fill it with bone cement, so it can be used as a mount anchor.  

Therefore, after the bone cement and accelerometer had been prepared, the hole was 

filled with bone cement, and the accelerometer was placed within the hole as far away 

from the neck as possible (figure 21). The accelerometer would have clearance when 

being screwed on and off of the implant.  Pressure was applied with the thumb on the 

accelerometer until the cement had set.  C-clamps couldn’t be used because of the 

irregular shape of the femur and the location of the accelerometer.  This procedure was 

carried out for both the implanted and non-implanted femoral stems. 

 Before attaching accelerometers to the implanted acetabular cup, some issues had 

to be addressed. The site chosen for attachment was the edge of the acetabular cup closest 

to the obturator foramen (the large hole that is present on each side of the pelvis).  This 

site was chosen because the space created by the obturator foramen gave some degree of 

maneuverability to the drill and to the accelerometer which had to be twisted around in 

order to be secured.  The edge of the cup was concealed by a small bit of the cortical shell 

which was removed by a Dremel rotary tool.  Once the shell was exposed, a 0.101 inch 
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hole was drilled, and the same procedure was carried out as described earlier with the 

non-implanted acetabular cups.  Once the metal stud was in place for the first acetabular 

cup, it became apparent that the mounting approach would have to change.  The space 

given by the obturator foramen was large enough for the accelerometer itself, but it didn’t 

leave enough freedom to screw on the accelerometer because of the wire protruding from 

the side of the accelerometer.   Therefore, it was necessary to carve out some space on 

either side of the stud into the superior pubic ramus and into the ischium.   

 Because of the awkward angle involved in affixing the accelerometer into the first 

implanted cup, it was decided to try using an industrial strength epoxy.  In order to do 

this, the cortical bone still had to be removed at the point of fixation, and parts of superior 

pubic ramus and the ischium had to be carved out again.  The accelerometers had come 

with smaller pre-made studs and a small hexagonal base with which to attach the stud and 

accelerometer.  The option of using the base instead of gluing the accelerometer directly 

onto the cup was chosen because this choice would allow the sensor to be removed and 

affixed multiple times.  If the accelerometer had been glued directly, the bond would 

have had to be broken when the accelerometer needed to be taken off and would have had 

to have been glued again for more tests to occur.  The difference between the glued and 

hard mounted accelerometers was not expected to be noticeable.  Once the inserts were 

placed in the cups, the decision was made to make the hard mounted pelvis the one with 

the polyethylene liner because it was expected to have the smallest magnitude of 

vibration. If there was any difference at all between the mounts, the extra security of the 

hard mount would help ensure that the least amount of vibration data was distorted.   
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3.2.6 Testing Machine: 

 Through collaboration with Oak Ridge National Laboratory (ORNL), the MTS 

312.21hydraulic material tester was chosen as the testing device for this study.  ORNL 

also granted use of their machine for the purposes of this study.  This machine had a load 

range of 0 to 22,000 pounds.  This particular apparatus performed testing on a single axis 

(the vertical axis).  The height of the load frame was adjustable. This was important 

because it allowed the mechanism to accommodate the height of a full length femur and 

accompanying fixtures.  A 1 inch 1-14 thread connector was the initial basis for 

connecting fixtures to this machine, but ORNL was also in possession of a collection of 

adapters allowing several choices of fixture mount size.  

3.2.7 Fixtures: 

 Fixtures had to be designed for the impact tests which needed to meet several 

criteria, including: 

1. Holding the pelvis and femur in correct anatomical position 

2. Not moving during impact tests 

3. Withstanding the maximum force of the impact tests 

4. Showing minimal inhibition of the vibratory properties of the THA system 

5. Fitting and working properly with the machine chosen for the impact tests 

6. Demonstrating economically feasibility 

The largest of these problems to overcome was the proper orientation of the femur with 

the pelvis during the tests.  The human hip interface is not a one dimensional system.  

Gait applies movement and forces in multiple directions.  For the purposes of this study 
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the femoral head had to be lined up with the acetabular cup.  If the tests only involved 

one specific femur and one specific pelvis, the fixtures could have been designed around 

that one set.  However, due to the slight differences in orientations of the implants, a pair 

of fixtures had to be designed that provided for an adjustable orientation.  Adjustability 

would allow all of the implanted bone sets to be used in the same fixtures.  Planning for 

adjustability would also save time on the design process because as long as the fixtures 

were adjustable over a range of dimensions, they wouldn’t have to be designed for any 

specific test.  After planning and talking with the machine shop, a final design was 

chosen for both fixtures. 

3.2.8 Pelvis Fixture: 

 On the MTS machine, the piston is the bottom component which moves 

vertically.  Therefore, to make the test visibly and physically accurate, the pelvis was 

chosen to be mounted to the static part of the machine that was to be impacted by the 

piston.  Originally impact tests for this study were going to run as high as 1,000 lb and a 

fixture design capable of withstanding a 2,000 lb impulse was necessary for safety 

reasons.  It was decided that the fixtures used in this study be designed, such that they 

could be used for future testing using much larger loads than those used in this study.  To 

make the pelvis fixture as adjustable as possible, a ball joint was chosen to attach the 

pelvis fixture to the top of the machine.  A ball end trailer hitch was used as the ball joint.  

A round metal plate, 4.5 inches in diameter, 0.75 inch thick with 3-5/16 inch screws was 

placed over the shaft of the trailer hitch and held in place by the ball.  The next part of the 

fixture was a ½-inch thick 9x7 inch piece of steel.  Another steel ring plate, identical in 
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size to the previous ring plate, except one  half inch thicker was welded to this plate.  The 

center of this thicker plate had been reamed out spherically to accommodate the ball 

joint.  Three holes in the larger ring lined up with the three holes in the other ring.  When 

screws connected the two plates, the result was a plate that was moveable from the 

horizontal to 80 degrees.  When the screws were completely tightened down, the ball 

joint became immobile.   

 Once the rigid plate fixture had been created, a method of attaching the pelvis to 

the plate had to be devised.  To distribute the impact forces of impact across the plate 

evenly, the pelvis had to lay on the plate using a material to fill the irregular gaps 

between the back of the pelvis and the plate, ensuring that unnecessary stresses were not 

applied to the synthetic bone.  The best way do accomplish this task was determined to be 

through the creation of a mold to hold the pelvis.  Conceptually, a mold with a flat 

bottom and with the contours of the back side of the pelvis on top was created.  The 

pelvis would be placed in the mold, and the mold would be attached to the fixture plate.  

When struck, the entire plate would absorb the impact.   

 The material chosen for the mold was Bondo auto body filler.  This particular 

material was chosen because it was cheap, readily accessible, easy to work with, and 

fairly strong.  While it was not certain that this material would be capable of withstanding 

the forces exerted under testing conditions, a decision was made to try it, and if it failed, 

replace it with something else.  To create the mold, a plastic container with roughly the 

same dimensions of the pelvis was chosen.  A large amount of Bondo was mixed and 

poured into the container.  A pelvis which had no implants was covered in Aluminum foil 

for protection and placed in the container.  The pelvis was adjusted to the desired 
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orientation and angle.  Excess Bondo was quickly moved around the pelvis to fill in 

gaps.  The mold was then allowed to set.  Once ready, the mold was removed from the 

container, and a Dremel rotary tool was used to cut the mold until the pelvis could be 

removed.  The tool was then used to smooth the mold and eliminate any jagged edges as 

well as to loosen the mold slightly so that the pelvis could be easily placed and removed, 

yet not fall out.  A large hole was bored into the back of the mold so that there would be 

no interference with the accelerometer that was positioned on the pubis directly behind 

the center of the acetabulum.  From this hole, a large groove was cut so that the wire from 

the accelerometer could be placed without being pinched.  Three ½-inch diameter holes 

were then drilled at three corners of the mold and then tapped.  Holes corresponding to 

the holes in the mold were drilled into the ½-inch plate of the fixture 1.5 inches from the 

edge at three of the corners.  Screws were then used to secure the mold to the fixture 

(figure 22).   

 Once the mold was attached, one of the pelvises was placed in the mold, and the 

fixture was held in the same orientation in which it would be during testing.  It was 

decided that the angle of the incline was not steep enough and did not resemble the 

 

 

Figure 22.  Pelvis Resting Inside Pelvis Fixture 
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posture of the pelvis of a standing human closely enough.  Therefore, a Dremel tool 

with a cutting wheel was used to cut a wedge of the trailer hitch portion of the fixture.  

This cut allowed the rotating plate more room to maneuver and created a more lifelike 

pelvis position. Once the fixture was deemed to be adjustable enough, the threaded end of 

the ball joint (14 threads per inch) was screwed into the machine and tightened using two 

hexagonal nuts. 

3.2.9 Femur Fixture: 

 Like the pelvis fixture, designing adjustability into the femur fixture was very 

important.  The base of the fixture was a ½-inch piece of steel.  On this plate was welded 

a piece of steel pipe which was threaded interiorly with a 14-1 tap.  On top of the pieces 

of steel were mounted two precision sliding tracks designed for use in metal machine 

shops.  On top of these tracks was mounted another ½-inch piece of steel which joined 

the two tracks and provided a surface for the bone to rest.  When oriented anatomically, it 

was determined that the hollow shaft of the bone made a 5.5° angle with the horizontal.  

Therefore, a hole was drilled into the plate at a 5.5° angle and threaded.  A threaded rod 

was screwed into this hole so that the femur could be mounted on it, reducing movement 

of the femur during testing.  On the sides of the base plate were mounted vertical plates 

which were about as tall as the femur when it stood on end.  Holes were drilled into these 

plates and threads were tapped.  Threaded rods with knobs on one end and adjustable feet 

on the other were screwed into these holes and used as clamps to secure the femur (figure 

23).  Packing foam was placed between the feet and the femur in order to minimize any  
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A. B. 
Figure 23.  A.) Femur Fixture B.) Femur Mounted Within Fixture 

 
 
 
 
 
 
 
 
 
 
 
effect the fixture would have on vibration as well as to minimize any damage that might 

occur from the clamping.   

 Later it was decided that it was necessary to have a force transducer in the system 

other than the one mounted on the impact tester.  Because the fixtures had already been 

made, altering the existing fixtures would be the best course of action.  A 0.159 inch hole 

was drilled and tapped with 10-32 UNF-2B threads into the platform on top of the sliding 

tracks.  This hole was used to mount the force transducer to the fixture.  A smaller steel 

plate was then laid on top of the transducer.  A screw was used to secure the plate to the 

top of the transducer.  The femur was then placed on this plate instead of the plate 

mounted on top of the sliding tracks (figure 24).  
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Figure 24.  Femur Mounted on Force Transducer 
 

3.3 Testing: 

3.3.1 Component Resonant Testing: 

 Each component and component configuration was tested to determine resonancy 

and excited frequencies.  This testing was done by hanging the component, with 

accelerometer mounted, from a string and then tapping it with an instrumented impact 

hammer while the data acquisition system was running.  Each component test was 

conducted six times in order to verify the repeatability of the frequencies seen in the test 

and because it was possible to conduct an unlimited number of tests unlike the situation 

presented at ORNL. 

 For the acetabular shells, a small 0.043” hole was drilled through the rim of the 

acetabular cup right above where the accelerometer stud was placed.  A piece of string  

was tied through this hole and the implant was hung from this string.  Impact occurred at 

the center of the shell or the center of the acetabular liner.  Tests were carried out for the 

acetabular cup, acetabular cup with metal liner, acetabular cup with polyethylene liner, 
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and the acetabular cup with ceramic liner in this fashion.  Cup tests were performed with 

one accelerometer mounted towards the mouth of the cup (figure 25). 

 A piece of thread was tied around the bottom of the trunion toward the top of the 

implant in order to hang the femoral stem.  This process allowed the implant to hang 

securely.  Impact for the stem tests occurred at the top of the trunion when no femoral 

head was present and on the top of the femoral head when present.  Hip stem tests were 

carried out for the stem only, the stem with metal femoral head, and the stem with 

ceramic femoral head.  Stem tests were performed with one accelerometer mounted on 

the top of the femoral stem (figure 26). 

 In order to test the bones, kite string had to be employed because the weight was 

too great for the sewing thread used in the implant tests to withstand.  To test the femur, 

the string was tied around the femoral head.  Impact occurred at the top of the natural and 

synthetic femoral head for femur tests.  Tests were carried out on the natural bone, 

implanted stem, implanted stem with ceramic femoral head, and the implanted stem with 

metal femoral head.  Femur tests were conducted with two mounted accelerometers, one 

on the stem (when available) and one on the greater trochanter of the femur (figure 27a).  

To test the pelvis, the string was tied around the obturator foramen in order to hang the 

bone.  Impacts for the pelvis occurred at the center of the acetabulum when no implant 

was present and at the center of the acetabular cup or insert when implants were present.  
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Figure 25.  Resonant Test Setup for Acetabular Cup and Liner 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   
A.    B. 

Figure 26.  A.) Resonant Test for Femoral Stem B.) Resonant Test for Femoral Stem with Head 
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A.    B. 

 
Figure 27.  Resonant Test Setups for A.) Implanted Femur and B.) Implanted Pelvis 

 
 
Tests were carried out on the normal pelvis, pelvis with cup implanted, pelvis with cup 

and metal insert, pelvis with cup and ceramic insert, and pelvis with cup and polyethylene 

insert.  Pelvis tests were conducted with accelerometers mounted on the cup and on the 

pubis directly behind the center of the acetabulum (figure 27b). 

 Tests were also conducted with the bones in the fixtures in order to investigate 

any possible effect the fixtures may have on the system.  For the femur, the femoral 

fixture was set upright and a normal bone, bone with stem and ceramic femoral head, and 

bone with stem and metal femoral head were placed within it and secured (figure 28a).  

The impact hammer was used to strike the femur on the femoral head, and vibration was 

measured by accelerometers mounted on the greater trochanter and on the top of the 

stem.  For the pelvis, the tests were conducted with the pelvis in the fixture which was 

laid on the ground.  The impact hammer was used to strike the center of the acetabular 

liner or acetabulum for the normal pelvis, pelvis with acetabular cup with metal liner, 

pelvis with acetabular cup with polyethylene liner, and pelvis with acetabular cup with 

ceramic liner (figure 28b).  Vibration for the mounted pelvis tests was measured by an  
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A.                B. 
Figure 28.  Resonant Test for A.) Femur and B.) Pelvis in Corresponding Fixtures 

 
 
 
accelerometer mounted on the rim of the acetabular cup and by an accelerometer 

mounted on the pubis directly behind the center of the acetabulum.   

3.3.2 Tests with No Separation: 

 In order to compare the differences in the frequencies occurring due to vibration 

when sliding occurs and when it doesn’t occur, some tests had to be run where no 

separation existed.  To properly carry out these tests, a Force vs. Time measurement was 

taken several times using a three dimensional AMTI force plate.  The average times of 

these trials from heel strike to toe-off were taken to give a target time frame that the 

impact tester should use to reach the desired force and then let back off.  The time 

determined necessary for the non separation load tests to emulate was 0.5 seconds (Figure 

29). To carry out these tests, the fixtures were mounted onto the load frame of the MTS 

frame, and the implanted bones were then loaded into the fixtures (figure 30).  During 

MTS testing, it was necessary to clamp the pelvis into the fixture in order to prevent it 

from falling out of the fixture. 



55 

0

200

400

600

800

1000

1200

0 1 2 3 4 5 6

Time (S)

Fo
rc

e 
(N

)

 
Figure 29.  Example of Forceplate Curve Used to Determine Speed of Tests Without Separation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

A.    B. 
Figure 30.   A.) Orientation of Bones While in Fixtures During Testing B.) Fixtures in MTS Machine 

During Testing 
 



56 

The femur was moved up until a force registered on the controls (indicating 

contact) and then backed off till the force was just zero.  This process meant that there 

was contact between the acetabular cup and the femoral head but no force being applied.  

A specific maximum load was input into the MTS machine controls.  The machine was 

configured in such a way that once the maximum force had been reached, the machine 

would reverse and go back to the position in which it started.  Based on the forceplate 

data, a specific speed was input into the controls as well.  This decision meant that the 

maximum load would be reached in a predetermined amount of time in order to more 

closely resemble the load curve observed in actual gait movement.  These tests were 

carried out at 222.5, 445, 667.5, 1112.5, 1335, and 1780 N.  After each test, the load 

curve was observed (Figure 31) to ensure that it did follow a similar pattern to that of gait 

and that the desired force was reached.  When necessary, the loading speed and 

maximum force were adjusted. 
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Figure 31.  Force Curve of MTS Tests with no Separation 
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3.3.3 Tests with Separation: 

 In impact tests such as these, the actual physical separation between the femoral 

head and acetabular cup is of little consequence.  The parameter distinguishing the 

amount of separation was velocity as related by the simple relation: 

axv 2=  

In this case, v is the vertical velocity of the femur as it impacts the pelvis; x is the desired 

separation to simulate; and a is the acceleration of the femur into the pelvis that occurs in 

the body.  In this situation, the acceleration of the pelvis’s moving toward the femur (or 

vice versa) was considered to be the acceleration due to gravity or 9.81m/s2.  

Acceleration was assumed to be constant.  For a separation of 1mm, it was determined 

that the machine had to have a vertical velocity of 14 cm/s.  Because this machine used 

English units, the equivalent of 5.6 inches was the speed desired to simulate the impact 

caused by a separation of 1mm.  The vertical speed that the machine reached was found 

by calculating the derivative of the displacement curve using a simple program written in 

Matlab.  The displacement data was output by an extensiometer which was in contact 

with the bottom of the femur fixture.  The extensiometer was connected to the data 

acquisition system, and fixture displacement data was collected for all tests (figure 32).  

Ideally, the impact tests with separation would be carried out at identical loads as found 

in the tests with no separation.  However, the machine being used for this study did not 

necessarily yield very repeatable results.  Therefore, many tests had to be repeated, and 

much data were acquired over a variety of loads and simulated separations (table 3).  The 

tests being compared in this study are grouped by their proximity to one another based on  



58 

 

 
Figure 32.  Extensiometer and Load Cell on Test Setup 

 

 

 

 

Table 3.  Impact Test Groups Considered for Comparison 

Material Force (N)
Simulated 
Separation 

(mm)
MOP 679.03 1.5078
MOM 688.82 0.7964
COC 662.57 1.0569

MOP 1139.6 1.2245
MOM 1168.1 0.9289
COC 1132.9 1.1931

MOP 1280.6 1.1698
MOM 1270.8 1.1698
COC 1290.4 1.0642

MOP 1506.7 1.1468
MOM 1533.8 1.43
COC 1501.3 0.7964

MOP 1713.2 2.411
MOM 1739.4 1.3876
COC 1722.9 1.0277

MOP 1979.2 1.8014
MOM 1883.6 1.3048
COC 1851.1 1.1164  
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both load registered by the MTS load cell and by the separation calculated from the 

derivative of the displacement curve.  The tests, actual force, and simulated separation 

can be found in Table 3. 

 

3.4 Data Processing: 

3.4.1 Preliminary Processing: 

 Once the data had been acquired, all post processing was carried out using Matlab 

(The Mathworks Inc., Natick, MA).  To examine data characteristics after each test to 

determine if the test was actually what was desired, some smaller crude programs were 

developed.   In order to determine if the velocity, and, thereby, the simulated separation, 

was accurate, the data obtained from the extensiometer were differentiated to get the 

velocity.  The largest velocity on the plot was determined to be the max speed.  In order 

to determine what was truly the maximum velocity, tests with smaller displacements 

often had a smaller step size on the differentiation than tests with larger displacements.  

The simple code used for this can be seen in the appendix.  In addition to velocity 

measurements, unfiltered FFT’s were taken from each channel and plotted for quick 

comparison in addition to simple plots of the raw acceleration signal produced from the 

impact for all acceleration channels. 

3.4.2 Data Verification: 

 It was determined that an appropriate way to verify validity of both accelerometer 

data and force transducer data from the impact tests was to compare velocity with respect  
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to force.  The force measured by the MTS load cell corresponded to the vertical force 

exhibited by the test.  The most appropriate acceleration signal corresponding to this 

force was the z-axis on the accelerometer mounted on the femoral stem.  Ideally, in a test 

such as this the velocity would be at a maximum just as the force began to rise at the 

instant impact began.  To get the velocity curve in this case, the integral was found for 

the acceleration signal in question.  Integration was carried out by using the cumulative 

sum of the signal and multiplying it by 1/Fs.  The plot of the velocity exhibited on the 

vertical axis of the femur accelerometer was then compared to a scaled and smoothed 

version of the force curve.  Since the shapes were the only items being considered in this 

analysis, any change in magnitude caused by the smoothing filter on the force curve was 

inconsequential.   

3.4.3 Final Data Processing: 

 After all preliminary processing had been completed, a definitive method of 

processing the large amount of data acquired needed to be developed.  The method used 

needed to make the data as clear as possible for comparison while keeping the overall 

distortion from filtering and other manipulation to a minimum. 

 With an FIR filter, there are both poles and zeros to manipulate, making the filter 

more complex.  Therefore, it was decided to use an IIR filter design technique to filter the 

acquired data.  The method was implemented through the use of Matlab.  The first step in 

implementing this IIR technique was determining the filter parameters.   Because of noise 

and ambient vibration, it was decided to eliminate all frequencies below 10 Hz.  Because 

not all of the accelerometer axes went past 7000 Hz, it was decided to filter out all signals 
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above 7000 Hz, thus creating a passband between 10 and 7000 Hz.  The desired filter to 

use was a Butterworth filter.  The order of the filter was determined by using the 

“buttord” command in Matlab.  The desired cutoff frequencies and dB loss were input 

into the command parameters.  The starting point of the filter was determined to be 5 Hz 

and the ending frequency was determined to be 8000 Hz.  The maximum allowable loss 

through the passband was set at 3 dB and the minimum allowable loss through the 

stopband was set at 10 dB.  The “buttord” command then determined that the proper 

order for a Butterworth filter meeting all of the stated criteria was 3.  This information 

was then used to create a Butterworth filter using the “butter” command (figure 33). 
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Figure 33.  Magnitude and Phase of the Passband Filter  
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 After reviewing the preliminary data, a spike in the 670 to 690 Hz range was 

exhibited in all impact tests.  The spike was also present when the data acquisition 

program ran, but no impact test was conducted.  Therefore, it was determined that the 

spike was due to some sort of noise in the system.  In order to get rid of this noise, a 

stopband filter was necessary.  Design of this filter was similar to the passband filter.  

The passband for this filter was set up to be 0-655 Hz and 685-7000 Hz.  The maximum 

dB loss in the passband was set at 3 dB and the minimum dB loss in the stopband was set 

to 10 dB. Through use of the “buttord” command, it was determined that the order of 

this filter was 2.  This information was then used to create a Butterworth filter using the 

“butter” command (figures 34 and 35). 
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Figure 34.  Magnitude and Phase of the Stopband Filter  
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Figure 35.  Close Up Magnitude of Stopband Filter  

 
 

The data was processed using a hanning window that was overlapped 8 times within the 

width of the sample being used.  This window was then used to find the PSD using 

Welch’s method via the “pwelch” command in Matlab.  
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CHAPTER IV 

RESULTS 
 

Note:  All results are for the accelerometer mounted on the femoral stem in the vertical 
direction (C3>) during an 1150 N test for COC, unless noted otherwise 
 

4.1 Effects of Filtering: 

 The changes observed in the acceleration signal due to filtering are minimal 

(figure 36).  However, when this signal is observed in the frequency domain, the change 

in magnitude and the elimination of unwanted signals is apparent (figure 37).  A band 

pass filter was applied, effectively only allowing frequencies between 10 and 700 Hz. 

The effect of this filter can be seen by observing the sharp dropoff after 7,000 Hz 

compared to the unfiltered signal.   A stop-band filter was also used to eliminate 

frequencies in the range of 655 Hz to 685 Hz.  It was necessary to remove these signals 

because a spike in the PSD was present for this frequency, even if no impact was made.  

This indicates that the signal is some sort of noise in the system, possibly from the 

vibration of the MTS testing machine itself.  Therefore, we assumed that this noise spike 

is from another machine that was in use during the impact testing machine tests we 

conducted involving natural frequency determination. The effect of this filter can be seen 

in the small negative spike on the filtered PSD around 670 Hz that is not present on the 

unfiltered PSD.   
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Figure 36.  Comparison of Acceleration Signal Without Filtering (top) and with Filtering (bottom) 
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Figure 37.  Comparison of PSD Signal Without Filtering (top) and with Filtering (bottom) 
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4.2 Data Correlation and Verification: 

 In order to help verify that the data acquired was logical, it was necessary to 

subject the data to some rudimentary preliminary tests.  One of these tests was a 

comparison of the force signal registered by the force transducer and the velocity of the 

femur fixture as it moved upward in the C3> direction.   The nature of this test suggests 

that the velocity of the femur fixture moving up will be at a maximum just before impact 

and then decrease.  As the velocity decreases, the force should be at a maximum.  In 

order to compare the force from the MTS transducer and the velocity derived from the 

acceleration signal, the data first had to be filtered so that the general shape of the curves 

could be examined more easily.  A high-pass Butterworth filter with a cutoff frequency of 

50 Hertz was created for this purpose.  The smoothing filter makes observing the general 

behavior of the signal easier (figures 38-40).   It is evident that the magnitude of the 

signals is changed when this filter is applied, but this change is of no consequence 

because the overall behavior of the signal is not changed.  The relationship between the 

MTS load cell data and the velocity derived from the accelerometer signal verifies that 

the data acquired is logical for the test in question (figure 40).  The maximum force does 

occur approximately when the velocity curve is at zero. 
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Figure 38.  Comparison of Force Signal and Force Signal After a Smoothing Filter is Applied 
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Figure 39.  Comparison of Velocity Signal and Velocity Signal After a Smoothing Filter is Applied 
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Figure 40.  Comparison of Force and Velocity Curves to Verify Data Reliability.  Entire Force Curve (top) 

and Blown Up Impulse Region to Demonstrate that the Force is at a Maximum Approximately when the 
Velocity is Zero (lower). 

 

4.3 The Effect of Impact Force: 

 When a comparison of the acceleration signals under maximum and minimum 

load tests is made (figures 41-43), a noticeable difference can be observed in the 

magnitude of the acceleration.  Both MOP tests and MOM tests show an increase in 

acceleration magnitude by more than a factor of ten when the maximum impact force is 

applied compared to the minimum impact force.  The COC test however, does not exhibit 

this trait.  This may be due to the different nature of the COC material or it may be due to 

an errant test.   

 The trend is similar for the PSD’s of the maximum and minimum force 

acceleration signals (figures 44-46).  The magnitude and range of frequencies was 

increased significantly between maximum and minimum impact loads for MOP tests and 

MOM tests.  For the COC tests, the PSD magnitude actually decreased slightly for the  
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Figure 41.  Comparison of Acceleration Signals for MOP at Minimum Test Load (top) and Maximum Test 

Load (lower). 
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Figure 42.  Comparison of Acceleration Signals for MOM at Minimum Test Load (top) and Maximum 

Test Load (lower). 
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Figure 43.  Comparison of Acceleration Signals for COC at Minimum Test Load (top) and Maximum Test 

Load (lower). 
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Figure 44.  Comparison of PSD Signals for MOP at Minimum Test Load (top) and Maximum Test Load 

(lower). 
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Figure 45.  Comparison of PSD Signals for MOM at Minimum Test Load (top) and Maximum Test Load 

(lower). 
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Figure 46.  Comparison of PSD Signals for COC at Minimum Test Load (top) and Maximum Test Load 

(lower). 
 



72 

maximum force.  However, the peak frequencies were not as clear for the maximum load 

test thereby indicating that the increased load could have added vibratory noise to the 

system, thereby making the signal more difficult to read.   

4.4 Separation Vs. No Separation: 

 Comparing the vibratory behavior of implants under conditions involving 

separation and without separation is important.   A test without separation would simulate 

the hip if it were a true ball and socket joint and the femoral head never left the acetabular 

cup.  On the other hand, a test with separation would simulate the hip if the femoral head 

were to separate from the acetabular cup during gait.  Hence, any significant difference 

between the two types of tests could be attributed directly to the fact that sliding occurs.  

 A comparison between tests of equal force with and without separation was made 

for MOP, MOM, and COC (figure 47).  For the MOP and MOM tests, the dominant 

frequencies were much larger for the tests with separation, however the magnitude of the 

noise and lesser frequencies was in the same range.  On the other hand, for the COC tests, 

tests with separation had a larger PSD magnitude by a factor of ten for most of the 

frequency range.  This seems to indicate definite difference in vibration transmission 

properties for the ceramic THA when compared to the metal and polyethylene.  This 

difference may be due to the increased hardness of the ceramic THA material.  The metal 

and polyethylene THA’s are softer and absorb a large portion of the impact through 

deformation.  However, when the harder ceramic components impact each other, there is 

much less deformation and much more of the energy is transferred to the bone and 

surrounding tissues.   
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Figure 47.  Comparison of PSD’s for Tests with and without Separation for Metal on Polyethylene (top), 

Metal on Metal (middle), and Ceramic on Ceramic (lower). 
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4.5 Component Frequencies: 

 For each component or set of components, six tests were taken.  If a frequency 

peak showed up in three or more of these tests, then that frequency was included in the 

component results (tables 4 and 5).  A variety of different frequencies, magnitudes and 

patterns were exhibited among the various components (figures 48-55).  The frequency 

range for the bones without implants (figures 48 and 49) seemed to vary between roughly 

300 Hz and 2250 Hz.  Implant components and their various configurations had higher 

frequency peaks in the range of 1800 Hz to 9600 Hz.  The PSD’s of the bones tended to 

exhibit clear peaks, but there were many of them.  These multiple peaks can be attributed 

to the different vibratory modes of the bone and the bone’s complex geometry.  PSD’s for 

the stem and the cup also exhibited pristine peaks, but fewer of them because the 

geometry of these components is more simple.  PSD’s for stem and cup tests with 

femoral heads and liners attached where more complex.  For the implanted component 

tests, there was also a wide range of frequencies but the repeatability of the tests was just 

as good as the un-implanted components.  There were still some clean peaks exhibited, 

however the trend seems to say that the more components added to a test (i.e. femoral 

head then implantation), the more complex the frequency spectrum became and therefore 

the more difficult to decipher.  The possibility for an errant resonant peak is greater for 

these more complex systems because of the interference that the peaks have with one 

another. 

 Many of the frequencies found for the unimplanted femur (table 4) match up well 

with the resonant tests in previous studies.  In all but two of the axes, there was a peak in 

the range of 310-330 Hz.  Khalil, Couteau, Rosenstein, and Taylor (table 1) all had  
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Figure 48.  PSD Data for the Unimplanted Femur Resonance Test.  The Accelerometer Shown Here was 
Mounted on the Greater Trochanter and the Signals are for the A1-axis (upper), A2-axis (middle), and the 

A3 -axis (lower). 
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Figure 49.  PSD Data for the Unimplanted Pelvis Resonance Test.  The Accelerometer Shown Here was 
Mounted on the Pubis Directly Behind the Center of the Acetabulum and the Signals are for the A1-axis 

(upper), A2-axis (middle), and the A3 -axis (lower). 
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Figure 50.  PSD Data for the Pelvis Implanted with a Cup and Metal Insert Resonance Test.  The 
Accelerometer Shown Here was Mounted on the Cup Next to the Acetabulum and the Signals are for the 

A1-axis (upper), A2-axis (middle), and the A3 -axis (lower). 
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Figure 51.  PSD Data for the Femur Implanted with a Stem and Metal Femoral Head Resonance Test.  The 
Accelerometer Shown Here was Mounted on the Stem and the Signals are for the A1-axis (upper), A2-axis 

(middle), and the A3 -axis (lower). 
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Figure 52.  PSD Data for the Acetabular Shell Resonance Test.  The Accelerometer Shown Here was 
Mounted on the Lip of the Shell and the Signals are for the A1-axis (upper), A2-axis (middle), and the A3 -

axis (lower). 
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Figure 53.  PSD Data for the Femoral Stem Resonance Test.  The Accelerometer Shown Here was 
Mounted on the Top of the Stem and the Signals are for the A1-axis (upper), A2-axis (middle), and the A3 

-axis (lower). 
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Figure 54.  PSD Data for the Femoral Stem with Metal Head Attached Resonance Test.  The 
Accelerometer Shown Here was Mounted on the Top of the Stem and the Signals are for the A1-axis 

(upper), A2-axis (middle), and the A3 -axis (lower). 
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Figure 55.  PSD Data for the Acetabular Cup with Metal Insert Resonance Test.  The Accelerometer 
Shown Here was Mounted on the Lip of the Shell and the Signals are for the A1-axis (upper), A2-axis 

(middle), and the A3 -axis (lower). 
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Table 4.  Dominant Frequencies Found in Synthetic Bones 

 

 
 
 
 
 
 

Table 5. Dominant Frequencies Found in Implant Components 

Axis A1> A2> A3>
Shell 4516±10 4516±10 4516±10

3610±10 9900±10
Shell/Metal 3995±10 3995±10 3980±10

1870±10 1910±10
Shell/Poly 3100±10 1570±10

1510±10 3105±10
Shell/Ceramic 3020±10 3000±10 3080±10
Stem 2149±1 2150±10 927±1

6339±1 2437±1 2149±1
6519±1 3979±10 6520±1

4593±1
6337±1
9595±10

Stem/Metal 1846 1846 1846
2067 2067 5315±10
3979 3979
5315±10 4564±10
7820±10 8500±10
8790±10

Stem/Ceramic 1937 2222±1 1937
2222±1 5142±10 5702±10
3979 8085±10 6068±10
5142±10 9620±10
5703±1
8095±10

Component Tests

 

Test
Axis A1> A2> A3> B1> B2> B3> C1> C2> C3>
Pelvis 862±1 1934±10 861±1 862±1 862±2 862±1 859±2 861±1 861±1

1300±10 2533±10 1205±10 1215±10 1206±2 1296±5 1208±3 1290±10
1490±10 1495±2 1295±3 1490±10 1490±1
2629±10 1930±10 1930±4

Femur 320±10 329±2 315±10 330±2 606±3 882±1 1490±2 313±1 329±1
606±2 881±2 881±1 607±1 1485±3 1492±3 2000±5 607±1 882±1
879±1 2232±10 1485±10 881±1 1611±2 2237±5 2248±10 1488±1 1488±3
1493±1 2240±10 1480±10 2006±5 2012±4 2242±3
1605±10 2240±5 2235±1

Synthetic Bone Tests
Accelerometer 1 Accelerometer 2 Accelerometer 3
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resonant peaks within this range.  Five of the nine channels have a peak near 881 Hz.  

Khalil determined that there was a peak at 879 Hz and Couteau determined that his 

experimental femur had a peak at 886.6 Hz.  In addition, for the implanted femur with the 

metal head, all but one of the axes exhibited a peak near 270 Hz (table 6).  Couteau was 

the only of the compared studies that included implanted femurs, but a peak was found at 

278 Hz for the experimental method and at 264 Hz for the FEM method.  None of the 

other studies examined femur resonance above 1000 Hz, so the correlation of the other 

peaks found here and their data is impossible to determine.  However, the large number 

of peaks that correspond to peak values in other studies seems to validate the method and 

results of this study. 

4.6 Impact Test Frequencies: 

 Because multiple tests  of the same material and load were not taken during this 

study, repeatability of impact test results are not known.  The trend of complicating the 

signal as more components were added to the test continued.  Now that the fixture, 

extensiometer, and MTS machine were all introduced into the system, the number of 

peaks found in each test increased significantly.  The major peaks were recorded and 

listed with the corresponding relative magnitude in order to demonstrate how dominant 

one peak was compared with the others (table 7).  During the impact tests, a peak could 

be found in basically almost any frequency range along the spectrum. 
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Table 6.  Dominant Frequencies Found in Implanted Bones  

Axis A1> A2> A3> B1> B2> B3>
Implanted Pelvis/Metal Insert 864±2 3167±10 866±5 2155±10 1815±10 3172±10

3171±10 4150±10 3171±10 2430±10 2850±10 2950±10
4150±10 6300±10 3171±10 2987±10

6795±10 6300±10 6380±10
Implanted Pelvis/Poly Insert 881±5 885±5 884±5 890±10 840±10 1202±10

1200±5 1202±5 1208±5 1207±10 1204±10 1605±10
1607±10 1607±10 1600±10 1606±10 1946±10 1825±10
1950±10 1830±10 1830±10 2466±10 1945±10
2460±10 2130±10 1950±10 3050±10

2466±10
Implanted Pelvis/Ceramic Insert 1330±10 1690±10 911±10 1880±5 1920±10 3060±20

1690±10 1910±10 3000±10 2610±10 2230±10 3560±20
1915±10 2050±10 3550±20 3290±10 2600±10 5150±10
3067±10 3580±10 5490±10 3580±20 3285±10 6740±20
3580±10 5405±10 9708±10 3575±20 8803±10
5400±10 6320±20
6300±10

Axis C1> C2> C3> D1> D2> D3>
Implanted Femur/Metal Head 265±5 265±5 2120±20 270±1 265±5 265±5

1400±10 1490±10 2420±10 2120±10 609±5 2320±10
1500±10 2100±10 2300±10 1495±5 3300±10
2105±10 3630±20 2070±20 6530±20
2415±10 5877±10 6900±20

Implanted Femur/Ceramic Head 280±5 280±5 1440±10 280±5 270±10 285±5
1440±5 1540±10 1550±10 865±5 640±10 2410±10
2190±10 2190±10 2183±10 1540±10 860±10 3400±20
2450±20 2420±10 2450±10 2190±10 1440±10 4730±10
3625±5 3615±20 4735±20 3400±10 1540±10 7950±10

4470±20 3515±20 2445±10
3410±10
3500±10
4510±10

Implanted Component Tests
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Table 7.  Dominant Frequencies Found in Impact Test (COC 1150 N). 

Measurement Freq. Freq. Freq. Freq. Freq. Freq.
Axis A1> A2> A3> B1> B2> B3>

26 69 47 47 43 48
683 683 683 459 416 709

1354 1035 1703 683 683 2163
2026 1337 3480 1428 1099 3295
2614 2026 4817 2008 1311 4817
3685 2248 5071 2902 1957 5071
5675 3685 5675 4288 2485 6245
7590 5499 9932 5388 3685 9260
8577 7309 5780 4680 9932
9763 8577 6271 4817

9788 7583 5208
9260 5293
9515 5780
9863 6854

Axis C1> C2> C3> D1> D2> D3>
25 24 623 163 163 25

440 163 2357 490 576 163
3505 434 3822 603 2358 623
4288 1101 4898 1101 3294 1021
5020 3480 6668 1566 3940 2485
6774 4816 8228 2331 5071 3940
8000 5345 9932 2485 6775 4816
8228 6980 3040 9932 5346
8757 8000 3405 6060
9260 8832 3940 6827
9515 9540 4400 8086

4944 9260
5531
6880
8239
8552
9863

Example Impact Test
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CHAPTER V 

DISCUSSION AND CONCLUSION 

5.1 Conclusions: 

The magnitude of the vibration found in tests where the femoral head separates 

from the acetabular cup is much larger than those tests where load was applied without 

separation.  This difference is much more noticeable in COC than in the other types of 

bearing surfaces.  These results indicate that there is a strong possibility that femoral head 

sliding during gait has a significant effect on the amount of vibration the hip is exposed 

to.  They also indicate that COC implants transfer more energy in the form of vibration to 

the surrounding tissue than MOM and MOP implants. 

The vibration data found during the impact tests varies widely in both magnitude 

and frequency. As figures 44-46 demonstrate, the amount of force applied to the 

components during a test directly affects the magnitude of the vibration measured.  The 

large number of test frequencies from the impact tests demonstrates the complexity the 

system being examined here.   A resonance peak in the impact test (table 7) can be found 

in the range of practically every component resonant peak.  Therefore, the direct effect of 

a particular component on the vibration of the system is not known for sure.  However, 

because there are peaks of at least some magnitude that correspond with the resonance of 

the bones, the preliminary indications indicate that the vibration found during these tests 

can indeed be potentially detrimental to bone, possibly contributing to implant loosening, 

and ultimately failure of the implant. 
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5.2 Future Research and Improvements: 

 While some resonant peaks of the femur and pelvis have been determined, it is 

not known for sure if exposing the bone to the frequencies would be harmful.  Knowing 

such information would be helpful in evaluating the severity of the problems caused by 

vibration, if any at all.  An experiment exposing a loaded wet femur or pelvis to these 

frequencies over a significant period of time may lead to insight on the vibrational effects 

on bone. 

 There is a discrepancy in the literature as to whether soft tissue significantly 

affects the vibration and frequencies of bones in vivo.  Determining the effect of soft 

tissue on the vibration of the bones in the hip would help to make future vibration studies 

more realistic.  Two possible methods of determining this effect on the study would be to: 

1.) Enclose the synthetic bones in some sort of biological serum like bovine serum or to 

wrap the bones in wet rags.  2.) Perform the same experiment with fresh, wet, cadaver hip 

joints. 

 The testing machine used in this study is primary meant to be used for material 

testing and therefore only operates on a single axis.  Loads on the hip in vivo occur in 

multiple directions in three dimensions.  Therefore, a more accurate and anatomically 

accurate study could be carried out with some sort of custom designed hip simulator with 

separation incorporated that moves in three dimensions or by some other type of machine 

that can move in three dimensions. 

 Because of time limitations, a low pass filter was not implemented into the data 

acquisition system.  Because of the lack of this low pass filter, which is used to filter out 

alias signals in the frequency spectrum, errant alias frequencies my appear in the data.  It 
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is impossible to know for sure which signals are erroneous and which are not.  However, 

all of the data was acquired with the same data acquisition system.  Therefore, the 

differences in the results from the different components and testing conditions are 

comparable to each other.  In future studies, it would be necessary to implement an anti-

aliasing filter into the data acquisition setup.  Once such a system was developed and data 

was acquired, a comparison could be made to the data presented here to see the true 

effect that alias signals had on the data. 
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Matlab Code for Data Processing: 
 
clear  
load mom250d_1.txt 
a=mom250d_1; 
[col,row]=size(a) 
samp=20000; 
ta=[0:1:length(a)-1]; 
tb=ta/samp; 
  
% Setting accelerometer channel of interest 
ch=9; 
% Giving channel of interest a variable name 
acc=a(:,ch)*9.81; 
  
% Defines the channel where the force data is 
force=a(:,14)*100*4.448*.0001; 
  
%%%%%%%%%%% Determine n's of band-pass filter and n's of stop band 
%%%%%%%%%%% filter 
  
%%%%%% BAND PASS 
%Wp represents the pass-band portion of this filter 10Hz to 7kHz 
Wp(1)=10/10000; 
Wp(2)=7000/10000; 
%max dB loss that we want through our pass band  
Rp=3; 
  
%Ws represents the starting points for the band stop filter one at 5Hz 
and 
%the other one at 8khz 
Ws(1)=5/10000; 
Ws(2)=8000/10000; 
%min dB loss that we want through our stop band 
Rs=10; 
  
%band pass params 
[n_bp,Wn_bp]=buttord(Wp,Ws,Rp,Rs) 
[b_bp,a_bp]=butter(n_bp,Wn_bp); 
figure(1) 
freqz(b_bp,a_bp,length(a),samp); 
fprintf(1,'\nn_bp: %g',n_bp); 
  
  
%%%%%% BAND STOP 
%Wp represents the pass-band portion of this filter 655 Hz and 685 Hz 
Wp(1)=655/10000; 
Wp(2)=685/10000; 
%max dB loss that we want through our pass band  
Rp=3; 
  
%Ws represents the starting points for the band stop filter one at 665 
Hz and 
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%the other one at 675 Hz 
Ws(1)=665/10000; 
Ws(2)=675/10000; 
%min dB loss that we want through our stop band 
Rs=10; 
  
%band STOP params 
[n_bs,Wn_bs]=buttord(Wp,Ws,Rp,Rs) 
[b_bs,a_bs]=butter(n_bs,Wn_bs,'stop'); 
figure(2) 
freqz(b_bs,a_bs,length(a),samp); 
fprintf(1,'\nn_bs: %g',n_bs); 
  
%here we want to create a hanning window that is 
1/numOverlappedSections of the original sample 
%length N. This is due to the fact that the hanning window in PSD is 
%overlapped multiple times to create the PSD approximation using 
welches 
%method 
  
numOverlappedSections=8; 
sizeHanning=round(length(a)/numOverlappedSections); 
hanning_win=hanning(sizeHanning); 
  
[Pxx,f]=pwelch(butter2_results,hanning_win,[],[],samp); 
  
[Pxx2,f2]=pwelch(acc,hanning_win,[],[],samp); 
  
plotconversion=20*log10(Pxx)/2; 
plotconversion3=20*log10(Pxx2)/2; 
  
figure(10) 
plot(f,plotconversion) 
  
figure(11) 
plot(f_old,plotconversion2) 
  
figure(12) 
plot(tb,acc) 
  
figure(13) 
plot(tb, butter2_results) 
  
figure(14) 
plot(f2,plotconversion3) 
  
output1=[f plotconversion]; 
output2=[tb' acc]; 
output3=[tb' butter2_results]; 
output4=[f2 plotconversion3]; 
  
save mom_1.txt output1 -ASCII -TABS   
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save coc_Acc.txt output2 -ASCII -TABS   
save Filter_coc_Acc.txt output3 -ASCII -TABS  
save Unfiltered_coc_FFT.txt output4 -ASCII -TABS  
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Component Resonant Test PSD’s: 
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Figure A-1.  PSD of a Resonance Test for a Hip Stem without Femoral Head Attached. The Signals are for 

the A1-axis (upper), A2-axis (middle) and A3-axis (lower).  
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Figure A-2.   PSD of a Resonance Test for a Hip Stem with Metal Femoral Head Attached. The Signals are 

for the A1-axis (upper), A2-axis (middle) and A3-axis (lower). 
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Figure A-3.  PSD  of a Resonance Test for a Hip Stem with Ceramic Femoral Head Attached. The Signals 

are for the A1-axis (upper), A2-axis (middle) and A3-axis (lower).  
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Figure A-4.  PSD of a Resonance Test for an Acetabular Cup without Liner Inserted. The Signals are for 

the A1-axis (upper), A2-axis (middle) and A3-axis (lower).  
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Figure A-5. PSD of a Resonance Test for an Acetabular Cup with Polyethylene Liner Inserted. The Signals 

are for the A1-axis (upper), A2-axis (middle) and A3-axis (lower).  
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Figure A-6.  PSD of a Resonance Test for an Acetabular Cup with Metal Liner Inserted. The Signals are 

for the A1-axis (upper), A2-axis (middle) and A3-axis (lower).  
 



104 

-95
-70
-45
-20

5

0 1000 2000 3000 4000 5000 6000 7000

Frequency (Hz)

Po
w

er
/F

re
qu

en
cy

(d
B/

H
z)

 

-95
-70
-45
-20

5

0 1000 2000 3000 4000 5000 6000 7000

Frequency (Hz)

Po
w

er
/F

re
qu

en
cy

(d
B/

H
z)

 

 

-95
-70
-45
-20

5

0 1000 2000 3000 4000 5000 6000 7000

Frequency (Hz)

Po
w

er
/F

re
qu

en
cy

(d
B/

H
z)

 

 
Figure A-7.  PSD of a Resonance Test for an Acetabular Cup with Ceramic Liner Inserted. The Signals are 

for the A1-axis (upper), A2-axis (middle) and A3-axis (lower).  
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Figure A-8.  PSD of a Resonance Test for Normal Synthetic Femur. The Signals are for the A1-axis 

(upper), A2-axis (middle) and A3-axis (lower).  
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Figure A-9.  PSD of a Resonance Test for Normal Synthetic Femur. The Signals are for the B1-axis 

(upper), B2-axis (middle) and B3-axis (lower). 
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Figure A-10.  PSD of a Resonance Test for Normal Synthetic Femur. The Signals are for the C1-axis 

(upper), C2-axis (middle) and C3-axis (lower).  
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Figure A-11.  PSD of a Resonance Test for Normal Synthetic Pelvis. The Signals are for the A1-axis 

(upper), A2-axis (middle) and A3-axis (lower).  
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Figure A-12.  PSD of a Resonance Test for Normal Synthetic Pelvis. The Signals are for the B1-axis 

(upper), B2-axis (middle) and B3-axis (lower).  
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Figure A-13.  PSD of a Resonance Test for Normal Synthetic Pelvis. The Signals are for the C1-axis 

(upper), C2-axis (middle) and C3-axis (lower).  
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Figure A-14.  PSD of a Resonance Test for a Synthetic Pelvis Implanted with Acetabular Cup with 
Polyethylene Liner. The Signals are for the A1-axis (upper), A2-axis (middle) and A3-axis (lower).  
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Figure A-15.  PSD of a Resonance Test for a Synthetic Pelvis Implanted with Acetabular Cup with 
Polyethylene Liner. The Signals are for the B1-axis (upper), B2-axis (middle) and B3-axis (lower).  
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Figure A-16.  PSD of a Resonance Test for a Synthetic Pelvis Implanted with Acetabular Cup with Metal 

Liner. The Signals are for the A1-axis (upper), A2-axis (middle) and A3-axis (lower).  
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Figure A-17.  PSD of a Resonance Test for a Synthetic Pelvis Implanted with Acetabular Cup with Metal 

Liner. The Signals are for the B1-axis (upper), B2-axis (middle) and B3-axis (lower).  
 



110 

-80
-55
-30

-5
20

0 1000 2000 3000 4000 5000 6000 7000

Frequency (Hz)

Po
w

er
/F

re
qu

en
cy

(d
B/

H
z)

 

-80
-55
-30

-5
20

0 1000 2000 3000 4000 5000 6000 7000

Frequency (Hz)

Po
w

er
/F

re
qu

en
cy

(d
B/

H
z)

 

 

-80
-55
-30

-5
20

0 1000 2000 3000 4000 5000 6000 7000

Frequency (Hz)

Po
w

er
/F

re
qu

en
cy

(d
B/

H
z)

 

 
Figure A-18.  PSD of a Resonance Test for a Synthetic Pelvis Implanted with Acetabular Cup with 

Ceramic Liner. The Signals are for the A1-axis (upper), A2-axis (middle) and A3-axis (lower).  
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Figure A-19.  PSD of a Resonance Test for a Synthetic Pelvis Implanted with Acetabular Cup with 

Ceramic Liner. The Signals are for the B1-axis (upper), B2-axis (middle) and B3-axis (lower).  
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Figure A-20.  PSD of a Resonance Test for a Synthetic Femur Implanted with Hip Stem with Metal Head. 

The Signals are for the C1-axis (upper), C2-axis (middle) and C3-axis (lower).  
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Figure A-21.  PSD of a Resonance Test for a Synthetic Femur Implanted with Hip Stem with Metal Head. 

The Signals are for the D1-axis (upper), D2-axis (middle) and D3-axis (lower).  
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Figure A-22. PSD of a Resonance Test for a Synthetic Femur Implanted with Hip Stem with Ceramic 

Head. The Signals are for the C1-axis (upper), C2-axis (middle) and C3-axis (lower).  
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Figure A-23.  PSD of a Resonance Test for a Synthetic Femur Implanted with Hip Stem with Ceramic 

Head. The Signals are for the D1-axis (upper), D2-axis (middle) and D3-axis (lower).  
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Figure A-24.  PSD of a Resonance Test for a Synthetic Pelvis Implanted with Acetabular Cup with 

Polyethylene Insert Resting within its Fixture. The Signals are for the A1-axis (upper), A2-axis (middle) 
and A3-axis (lower).  
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Figure A-25. PSD of a Resonance Test for a Synthetic Pelvis Implanted with Acetabular Cup with 

Polyethylene Insert Resting within its Fixture. The Signals are for the B1-axis (upper), B2-axis (middle) 
and B3-axis (lower).  
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Figure A-26.  PSD of a Resonance Test for a Synthetic Pelvis Implanted with Acetabular Cup with Metal 
Insert Resting within its Fixture. The Signals are for the A1-axis (upper), A2-axis (middle) and A3-axis 

(lower).  
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Figure A-27.  PSD of a Resonance Test for a Synthetic Pelvis Implanted with Acetabular Cup with Metal 

Insert Resting within its Fixture. The Signals are for the B1-axis (upper), B2-axis (middle) and B3-axis 
(lower).  
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Figure A-28.  PSD of a Resonance Test for a Synthetic Pelvis Implanted with Acetabular Cup with 

Ceramic Insert Resting within its Fixture. The Signals are for the A1-axis (upper), A2-axis (middle) and 
A3-axis (lower).  
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Figure A-29.  PSD of a Resonance Test for a Synthetic Pelvis Implanted with Acetabular Cup with 

Ceramic Insert Resting within its Fixture. The Signals are for the B1-axis (upper), B2-axis (middle) and 
B3-axis (lower).  
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Figure A-30.  PSD of a Resonance Test for a Normal Synthetic Pelvis Resting within its Fixture. The 

Signals are for the A1-axis (upper), A2-axis (middle) and A3-axis (lower).  
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Figure A-31.  PSD of a Resonance Test for a Normal Synthetic Pelvis Resting within its Fixture. The 

Signals are for the B1-axis (upper), B2-axis (middle) and B3-axis (lower).  
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Figure A-32.  PSD of a Resonance Test for a Synthetic Femur Implanted with Hip Stem with Metal Head 
Resting within its Fixture. The Signals are for the C1-axis (upper), C2-axis (middle) and C3-axis (lower).  
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Figure A-33. PSD of a Resonance Test for a Synthetic Femur Implanted with Hip Stem with Metal Head 
Resting within its Fixture. The Signals are for the D1-axis (upper), D2-axis (middle) and D3-axis (lower).  
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Figure A-34. PSD of a Resonance Test for a Synthetic Femur Implanted with Hip Stem with Ceramic 
Head Resting within its Fixture. The Signals are for the C1-axis (upper), C2-axis (middle) and C3-axis 

(lower). 
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Figure A-35.  PSD of a Resonance Test for a Synthetic Femur Implanted with Hip Stem with Ceramic 
Head Resting within its Fixture. The Signals are for the D1-axis (upper), D2-axis (middle) and D3-axis 

(lower).  
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Figure A-36.  PSD of a Resonance Test for a Normal Synthetic Femur Resting within its Fixture. The 

Signals are for the C1-axis (upper), C2-axis (middle) and C3-axis (lower).  
 
 

-80
-55
-30

-5
20

0 1000 2000 3000 4000 5000 6000 7000

Frequency (Hz)

Po
w

er
/F

re
qu

en
cy

(d
B/

H
z)

 

 

-80
-55
-30

-5
20

0 1000 2000 3000 4000 5000 6000 7000

Frequency (Hz)

Po
w

er
/F

re
qu

en
cy

(d
B

/H
z)

 

 

-80
-55
-30

-5
20

0 1000 2000 3000 4000 5000 6000 7000

Frequency (Hz)

Po
w

er
/F

re
qu

en
cy

(d
B/

H
z)

 
Figure A-37.  PSD of a Resonance Test for a Normal Synthetic Femur Resting within its Fixture. The 

Signals are for the D1-axis (upper), D2-axis (middle) and D3-axis (lower).  
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Figure A-38.  Acceleration data from the pelvis accelerometer for a metal-on-polyethylene THA, subjected 

to a 680 Newton impact load.  The signals are for the A1-axis (upper), A2-axis (middle) and A3-axis 
(lower).  
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Figure A-39.  Acceleration data from the acetabular cup accelerometer  for a metal-on-polyethylene THA, 
subjected to a 680 Newton impact load.  The signals are for the B1-axis (upper), B2-axis (middle) and B3-

axis (lower).  
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Figure A-40.  Acceleration data from the femoral stem accelerometer for a metal-on-polyethylene THA, 

subjected to a 680 Newton impact load.  The signals are for the C1-axis (upper), C2-axis (middle) and C3-
axis (lower).  
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Figure A-41.  Acceleration data from the greater trochanter accelerometer for a metal-on-polyethylene 

THA, subjected to a 680 Newton impact load.  The signals are for the D1-axis (upper), D2-axis (middle) 
and D3-axis (lower). 
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Figure A-42.  Acceleration data from the pelvis accelerometer for a metal-on-metal THA, subjected to a 
680 Newton impact load.  The signals are for the A1-axis (upper), A2-axis (middle) and A3-axis (lower).  
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Figure A-43.  Acceleration data from the acetabular cup accelerometer for a metal-on-metal THA, 

subjected to a 680 Newton impact load.  The signals are for the B1-axis (upper), B2-axis (middle) and B3-
axis (lower). 

 



123 

-70
-35

0
35
70

0 0.5 1 1.5 2

Time (S)

A
cc

el
er

at
io

n 
(M

/S
2 ) 

 

-70
-35

0
35
70

0 0.5 1 1.5 2

Time (S)

A
cc

el
er

at
io

n 
(M

/S
2 ) 

 

-70
-35

0
35
70

0 0.5 1 1.5 2

Time (S)

A
cc

el
er

at
io

n 
(M

/S
2 ) 

 
A-44. Acceleration data from the femoral stem accelerometer for a metal-on-metal THA, subjected to a 680 

Newton impact load.  The signals are for the C1-axis (upper), C2-axis (middle) and C3-axis (lower).  
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Figure A-45.  Acceleration data from the greater trochanter accelerometer for a metal-on-metal THA, 

subjected to a 680 Newton impact load.  The signals are for the D1-axis (upper), D2-axis (middle) and D3-
axis (lower). 
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Figure A-46.  Acceleration data from the pelvis accelerometer for a ceramic-on-ceramic THA, 

subjected to a 680 Newton impact load.  The signals are for the A1-axis (upper), A2-axis (middle) 
and A3-axis (lower).  
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Figure A-47.  Acceleration data from the acetabular cup accelerometer for a ceramic-on-ceramic 
THA, subjected to a 680 Newton impact load.  The signals are for the B1-axis (upper), B2-axis 

(middle) and B3-axis (lower).  
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Figure A-48.  Acceleration data from the femoral stem accelerometer for a ceramic-on-ceramic 
THA, subjected to a 680 Newton impact load.  The signals are for the C1-axis (upper), C2-axis 

(middle) and C3-axis (lower).  
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Figure A-49.  Acceleration data from the greater trochanter accelerometer for a ceramic-on-

ceramic THA, subjected to a 680 Newton impact load.  The signals are for the D1-axis (upper), 
D2-axis (middle) and D3-axis (lower). 
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Figure A-50.  Acceleration data from the pelvis accelerometer for a metal-on-polyethylene THA, 

subjected to an 1150 Newton impact load.  The signals are for the A1-axis (upper), A2-axis 
(middle) and A3-axis (lower).  
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Figure A-51.  Acceleration data from the acetabular cup accelerometer for a metal-on-

polyethylene THA, subjected to an 1150 Newton impact load.  The signals are for the B1-axis 
(upper), B2-axis (middle) and B3-axis (lower).  
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Figure A-52. Acceleration data from the femoral stem accelerometer for a metal-on-polyethylene 
THA, subjected to an 1150 Newton impact load.  The signals are for the C1-axis (upper), C2-axis 

(middle) and C3-axis (lower).  
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Figure A-53.  Acceleration data from the greater trochanter accelerometer for a metal-on-

polyethylene THA, subjected to an 1150 Newton impact load.  The signals are for the D1-axis 
(upper), D2-axis (middle) and D3-axis (lower). 
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Figure A-54.  Acceleration data from the pelvis accelerometer for a metal-on-metal THA, 
subjected to an 1150 Newton impact load.  The signals are for the A1-axis (upper), A2-axis 

(middle) and A3-axis (lower).  
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Figure A-55.  Acceleration data from the acetabular cup accelerometer for a metal-on-metal THA, 

subjected to an 1150 Newton impact load.  The signals are for the B1-axis (upper), B2-axis 
(middle) and B3-axis (lower). 
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Figure A-56.  Acceleration data from the femoral stem accelerometer for a metal-on-metal THA, 

subjected to an 1150 Newton impact load.  The signals are for the C1-axis (upper), C2-axis 
(middle) and C3-axis (lower).  
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Figure A-57.  Acceleration data from the greater trochanter accelerometer for a metal-on-metal THA, 

subjected to an 1150 Newton impact load.  The signals are for the D1-axis (upper), D2-axis 
(middle) and D3-axis (lower). 
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Figure A-58.  Acceleration data from the pelvis accelerometer for a ceramic-on-ceramic THA, 

subjected to an 1150 Newton impact load.  The signals are for the A1-axis (upper), A2-axis 
(middle) and A3-axis (lower).  
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Figure A-59.  Acceleration data from the acetabular cup accelerometer for a ceramic-on-ceramic 
THA, subjected to an 1150 Newton impact load.  The signals are for the B1-axis (upper), B2-axis 

(middle) and B3-axis (lower).  
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Figure A-60.  Acceleration data from the femoral stem accelerometer for a ceramic-on-ceramic 

THA, subjected to an 1150 Newton impact load.  The signals are for the C1-axis (upper), C2-axis 
(middle) and C3-axis (lower).  
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Figure A-61.  Acceleration data from the greater trochanter accelerometer for a ceramic-on-

ceramic THA, subjected to an 1150 Newton impact load.  The signals are for the D1-axis (upper), 
D2-axis (middle) and D3-axis (lower). 
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Figure A-62.  Acceleration data from the pelvis accelerometer for a metal-on-polyethylene THA, 

subjected to a 1280 Newton impact load.  The signals are for the A1-axis (upper), A2-axis 
(middle) and A3-axis (lower).  
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Figure A-63.  Acceleration data from the acetabular cup accelerometer for a metal-on-

polyethylene THA, subjected to a 1280 Newton impact load.  The signals are for the B1-axis 
(upper), B2-axis (middle) and B3-axis (lower).  
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Figure A-64. Acceleration data from the femoral stem accelerometer for a metal-on-polyethylene 
THA, subjected to a 1280 Newton impact load.  The signals are for the C1-axis (upper), C2-axis 

(middle) and C3-axis (lower).  
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Figure A-65.  Acceleration data from the greater trochanter accelerometer for a metal-on-

polyethylene THA, subjected to a 1280 Newton impact load.  The signals are for the D1-axis 
(upper), D2-axis (middle) and D3-axis (lower). 
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Figure A-66.  Acceleration data from the pelvis accelerometer for a metal-on-metal THA, 
subjected to a 1280 Newton impact load.  The signals are for the A1-axis (upper), A2-axis 

(middle) and A3-axis (lower).  
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Figure A-67.  Acceleration data from the acetabular cup accelerometer for a metal-on-metal THA, 

subjected to a 1280 Newton impact load.  The signals are for the B1-axis (upper), B2-axis 
(middle) and B3-axis (lower). 
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Figure A-68.  Acceleration data from the femoral stem accelerometer for a metal-on-metal THA, 

subjected to a 1280 Newton impact load.  The signals are for the C1-axis (upper), C2-axis 
(middle) and C3-axis (lower).  
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Figure A-69.  Acceleration data from the greater trochanter accelerometer for a metal-on-metal 
THA, subjected to a 1280 Newton impact load.  The signals are for the D1-axis (upper), D2-axis 

(middle) and D3-axis (lower). 
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Figure A-70.  Acceleration data from the pelvis accelerometer for a ceramic-on-ceramic THA, 

subjected to a 1280 Newton impact load.  The signals are for the A1-axis (upper), A2-axis 
(middle) and A3-axis (lower).  
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Figure A-71.  Acceleration data from the acetabular cup accelerometer for a ceramic-on-ceramic 
THA, subjected to a 1280 Newton impact load.  The signals are for the B1-axis (upper), B2-axis 

(middle) and B3-axis (lower).  
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Figure A-72.  Acceleration data from the femoral stem accelerometer for a ceramic-on-ceramic 
THA, subjected to a 1280 Newton impact load.  The signals are for the C1-axis (upper), C2-axis 

(middle) and C3-axis (lower).  
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Figure A-73. Acceleration data from the greater trochanter accelerometer for a ceramic-on-

ceramic THA, subjected to a 1280 Newton impact load.  The signals are for the D1-axis (upper), 
D2-axis (middle) and D3-axis (lower). 
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Figure A-74.  Acceleration data from the pelvis accelerometer for a metal-on-polyethylene THA, 

subjected to a 1500 Newton impact load.  The signals are for the A1-axis (upper), A2-axis 
(middle) and A3-axis (lower).  
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Figure A-75.  Acceleration data from the acetabular cup accelerometer for a metal-on-

polyethylene THA, subjected to a 1500 Newton impact load.  The signals are for the B1-axis 
(upper), B2-axis (middle) and B3-axis (lower).  
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Figure A-76.  Acceleration data from the femoral stem accelerometer for a metal-on-polyethylene 
THA, subjected to a 1500 Newton impact load.  The signals are for the C1-axis (upper), C2-axis 

(middle) and C3-axis (lower). 
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Figure A-77.  Acceleration data from the greater trochanter accelerometer for a metal-on-

polyethylene THA, subjected to a 1500 Newton impact load.  The signals are for the D1-axis 
(upper), D2-axis (middle) and D3-axis (lower). 
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Figure A-78.  Acceleration data from the pelvis accelerometer for a metal-on-metal THA, 
subjected to a 1500 Newton impact load.  The signals are for the A1-axis (upper), A2-axis 

(middle) and A3-axis (lower).  
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Figure A-79.  Acceleration data from the acetabular cup accelerometer for a metal-on-metal THA, 

subjected to a 1500 Newton impact load.  The signals are for the B1-axis (upper), B2-axis 
(middle) and B3-axis (lower). 
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Figure A-80.  Acceleration data from the femoral stem accelerometer for a metal-on-metal THA, 

subjected to a 1500 Newton impact load.  The signals are for the C1-axis (upper), C2-axis 
(middle) and C3-axis (lower). 
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Figure A-81. Acceleration data from the greater trochanter accelerometer for a metal-on-metal 

THA, subjected to a 1500 Newton impact load.  The signals are for the D1-axis (upper), D2-axis 
(middle) and D3-axis (lower). 
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Figure A-82. Acceleration data from the pelvis accelerometer for a ceramic-on-ceramic THA, 

subjected to a 1500 Newton impact load.  The signals are for the A1-axis (upper), A2-axis 
(middle) and A3-axis (lower).  
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Figure A-83.  Acceleration data from the acetabular cup accelerometer for a ceramic-on-ceramic 
THA, subjected to a 1500 Newton impact load.  The signals are for the B1-axis (upper), B2-axis 

(middle) and B3-axis (lower).  
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Figure A-84.  Acceleration data from the femoral stem accelerometer for a ceramic-on-ceramic 
THA, subjected to a 1500 Newton impact load.  The signals are for the C1-axis (upper), C2-axis 

(middle) and C3-axis (lower).  
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Figure A-85.  Acceleration data from the greater trochanter accelerometer for a ceramic-on-

ceramic THA, subjected to a 1500 Newton impact load.  The signals are for the D1-axis (upper), 
D2-axis (middle) and D3-axis (lower). 
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Figure A-86.  Acceleration data from the pelvis accelerometer for a metal-on-polyethylene THA, 

subjected to a 1730 Newton impact load.  The signals are for the A1-axis (upper), A2-axis 
(middle) and A3-axis (lower).  
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Figure A-87. Acceleration data from the acetabular cup accelerometer for a metal-on-

polyethylene THA, subjected to a 1730 Newton impact load.  The signals are for the B1-axis 
(upper), B2-axis (middle) and B3-axis (lower).  
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Figure A-88.  Acceleration data from the femoral stem accelerometer for a metal-on-polyethylene 
THA, subjected to a 1730 Newton impact load.  The signals are for the C1-axis (upper), C2-axis 

(middle) and C3-axis (lower). 
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Figure A-89.  Acceleration data from the greater trochanter accelerometer for a metal-on-

polyethylene THA, subjected to a 1730 Newton impact load.  The signals are for the D1-axis 
(upper), D2-axis (middle) and D3-axis (lower). 
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Figure A-90.  Acceleration data from the pelvis accelerometer for a metal-on-metal THA, 
subjected to a 1730 Newton impact load.  The signals are for the A1-axis (upper), A2-axis 

(middle) and A3-axis (lower).  
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Figure A-91.  Acceleration data from the acetabular cup accelerometer for a metal-on-metal THA, 

subjected to a 1730 Newton impact load.  The signals are for the B1-axis (upper), B2-axis 
(middle) and B3-axis (lower). 
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Figure A-92.  Acceleration data from the femoral stem accelerometer for a metal-on-metal THA, 

subjected to a 1730 Newton impact load.  The signals are for the C1-axis (upper), C2-axis 
(middle) and C3-axis (lower).  
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Figure A-93.  Acceleration data from the greater trochanter accelerometer for a metal-on-metal 
THA, subjected to a 1730 Newton impact load.  The signals are for the D1-axis (upper), D2-axis 

(middle) and D3-axis (lower). 
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Figure A-94.  Acceleration data from the pelvis accelerometer for a ceramic-on-ceramic THA, 

subjected to a 1730 Newton impact load.  The signals are for the A1-axis (upper), A2-axis 
(middle) and A3-axis (lower).  
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Figure A-95.  Acceleration data from the acetabular cup accelerometer for a ceramic-on-ceramic 
THA, subjected to a 1730 Newton impact load.  The signals are for the B1-axis (upper), B2-axis 

(middle) and B3-axis (lower).  
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Figure A-96.  Acceleration data from the femoral stem accelerometer for a ceramic-on-ceramic 
THA, subjected to a 1730 Newton impact load.  The signals are for the C1-axis (upper), C2-axis 

(middle) and C3-axis (lower).  
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Figure A-97. Acceleration data from the greater trochanter accelerometer for a ceramic-on-

ceramic THA, subjected to a 1730 Newton impact load.  The signals are for the D1-axis (upper), 
D2-axis (middle) and D3-axis (lower). 
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Figure A-98.  Acceleration data from the pelvis accelerometer for a metal-on-polyethylene THA, 

subjected to a 1900 Newton impact load.  The signals are for the A1-axis (upper), A2-axis 
(middle) and A3-axis (lower).  
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Figure A-99. Acceleration data from the acetabular cup accelerometer for a metal-on-

polyethylene THA, subjected to a 1900 Newton impact load.  The signals are for the B1-axis 
(upper), B2-axis (middle) and B3-axis (lower).  
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Figure A-100.  Acceleration data from the femoral stem accelerometer for a metal-on-

polyethylene THA, subjected to a 1900 Newton impact load.  The signals are for the C1-axis 
(upper), C2-axis (middle) and C3-axis (lower). 
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Figure A-101.  Acceleration data from the greater trochanter accelerometer for a metal-on-

polyethylene THA, subjected to a 1900 Newton impact load.  The signals are for the D1-axis 
(upper), D2-axis (middle) and D3-axis (lower). 
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Figure A-102.  Acceleration data from the pelvis accelerometer for a metal-on-metal THA, 
subjected to a 1900 Newton impact load.  The signals are for the A1-axis (upper), A2-axis 

(middle) and A3-axis (lower).  
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Figure A-103.  Acceleration data from the acetabular cup accelerometer for a metal-on-metal 

THA, subjected to a 1900 Newton impact load.  The signals are for the B1-axis (upper), B2-axis 
(middle) and B3-axis (lower). 
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Figure A-104.  Acceleration data from the femoral stem accelerometer for a metal-on-metal THA, 

subjected to a 1900 Newton impact load.  The signals are for the C1-axis (upper), C2-axis 
(middle) and C3-axis (lower).  
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Figure A-105.  Acceleration data from the greater trochanter accelerometer for a metal-on-metal 
THA, subjected to a 1900 Newton impact load.  The signals are for the D1-axis (upper), D2-axis 

(middle) and D3-axis (lower). 
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Figure A-106.  Acceleration data from the pelvis accelerometer for a ceramic-on-ceramic THA, 

subjected to a 1900 Newton impact load.  The signals are for the A1-axis (upper), A2-axis 
(middle) and A3-axis (lower).  
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Figure A-107.  Acceleration data from the acetabular cup accelerometer for a ceramic-on-ceramic 
THA, subjected to a 1900 Newton impact load.  The signals are for the B1-axis (upper), B2-axis 

(middle) and B3-axis (lower).  
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Figure A-108.  Acceleration data from the femoral stem accelerometer for a ceramic-on-ceramic 
THA, subjected to a 1900 Newton impact load.  The signals are for the C1-axis (upper), C2-axis 

(middle) and C3-axis (lower).  
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Figure A-109.  Acceleration data from the greater trochanter accelerometer for a ceramic-on-

ceramic THA, subjected to a 1900 Newton impact load.  The signals are for the D1-axis (upper), 
D2-axis (middle) and D3-axis (lower). 
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Impact Test FFT’s: 

Note:  These FFT’s represent raw data and are intended for the purposes of giving a 
general overview only. 
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Figure A-110.  FFT data from the pelvis accelerometer for a metal-on-polyethylene THA, 

subjected to a 680 Newton impact load.  The signals are for the A1-axis (upper), A2-axis (middle) 
and A3-axis (lower).  
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Figure A-111.  FFT data from the acetabular cup accelerometer  for a metal-on-polyethylene 

THA, subjected to a 680 Newton impact load.  The signals are for the B1-axis (upper), B2-axis 
(middle) and B3-axis (lower).  
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Figure A-112.  FFT data from the femoral stem accelerometer for a metal-on-polyethylene THA, 
subjected to a 680 Newton impact load.  The signals are for the C1-axis (upper), C2-axis (middle) 

and C3-axis (lower).  
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Figure A-113.  FFT data from the greater trochanter accelerometer for a metal-on-polyethylene 
THA, subjected to a 680 Newton impact load.  The signals are for the D1-axis (upper), D2-axis 

(middle) and D3-axis (lower). 
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Figure A-114.  FFT data from the pelvis accelerometer for a metal-on-metal THA, subjected to a 
680 Newton impact load.  The signals are for the A1-axis (upper), A2-axis (middle) and A3-axis 

(lower).  
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Figure A-115.  FFT data from the acetabular cup accelerometer for a metal-on-metal THA, 

subjected to a 680 Newton impact load.  The signals are for the B1-axis (upper), B2-axis (middle) 
and B3-axis (lower). 
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Figure A-116.  FFT data from the femoral stem accelerometer for a metal-on-metal THA, 

subjected to a 680 Newton impact load.  The signals are for the C1-axis (upper), C2-axis (middle) 
and C3-axis (lower).  
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Figure A-117.  FFT data from the greater trochanter accelerometer for a metal-on-metal THA, 

subjected to a 680 Newton impact load.  The signals are for the D1-axis (upper), D2-axis (middle) 
and D3-axis (lower). 
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Figure A-118.  FFT data from the pelvis accelerometer for a ceramic-on-ceramic THA, subjected 
to a 680 Newton impact load.  The signals are for the A1-axis (upper), A2-axis (middle) and A3-

axis (lower).  
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Figure A-119.  FFT data from the acetabular cup accelerometer for a ceramic-on-ceramic THA, 

subjected to a 680 Newton impact load.  The signals are for the B1-axis (upper), B2-axis (middle) 
and B3-axis (lower).  
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Figure A-120.  FFT data from the femoral stem accelerometer for a ceramic-on-ceramic THA, 

subjected to a 680 Newton impact load.  The signals are for the C1-axis (upper), C2-axis (middle) 
and C3-axis (lower).  
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Figure A-121.  FFT data from the greater trochanter accelerometer for a ceramic-on-ceramic 

THA, subjected to a 680 Newton impact load.  The signals are for the D1-axis (upper), D2-axis 
(middle) and D3-axis (lower). 
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Figure A-122.  FFT data from the pelvis accelerometer for a metal-on-polyethylene THA, 
subjected to an 1150 Newton impact load.  The signals are for the A1-axis (upper), A2-axis 

(middle) and A3-axis (lower).  
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Figure A-123.  FFT data from the acetabular cup accelerometer for a metal-on-polyethylene THA, 

subjected to an 1150 Newton impact load.  The signals are for the B1-axis (upper), B2-axis 
(middle) and B3-axis (lower).  
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Figure A-124.  FFT data from the femoral stem accelerometer for a metal-on-polyethylene THA, 

subjected to an 1150 Newton impact load.  The signals are for the C1-axis (upper), C2-axis 
(middle) and C3-axis (lower).  
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Figure A-125.  FFT data from the greater trochanter accelerometer for a metal-on-polyethylene 

THA, subjected to an 1150 Newton impact load.  The signals are for the D1-axis (upper), D2-axis 
(middle) and D3-axis (lower). 
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Figure A-126.  FFT data from the pelvis accelerometer for a metal-on-metal THA, subjected to an 
1150 Newton impact load.  The signals are for the A1-axis (upper), A2-axis (middle) and A3-axis 

(lower).  
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Figure A-127  FFT data from the acetabular cup accelerometer for a metal-on-metal THA, 
subjected to an 1150 Newton impact load.  The signals are for the B1-axis (upper), B2-axis 

(middle) and B3-axis (lower). 
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Figure A-128.  FFT data from the femoral stem accelerometer for a metal-on-metal THA, 
subjected to an 1150 Newton impact load.  The signals are for the C1-axis (upper), C2-axis 

(middle) and C3-axis (lower).  
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Figure A-129.  FFT data from the greater trochanter accelerometer for a metal-on-metal THA, 

subjected to an 1150 Newton impact load.  The signals are for the D1-axis (upper), D2-axis 
(middle) and D3-axis (lower). 
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Figure A-130.  FFT data from the pelvis accelerometer for a ceramic-on-ceramic THA, subjected 

to an 1150 Newton impact load.  The signals are for the A1-axis (upper), A2-axis (middle) and 
A3-axis (lower).  
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Figure A-131.  FFT data from the acetabular cup accelerometer for a ceramic-on-ceramic THA, subjected 

to an 1150 Newton impact load.  The signals are for the B1-axis (upper), B2-axis (middle) and B3-axis 
(lower).  
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Figure A-132.  FFT data from the femoral stem accelerometer for a ceramic-on-ceramic THA, 

subjected to an 1150 Newton impact load.  The signals are for the C1-axis (upper), C2-axis 
(middle) and C3-axis (lower).  
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Figure A-133.  FFT data from the greater trochanter accelerometer for a ceramic-on-ceramic THA, 

subjected to an 1150 Newton impact load.  The signals are for the D1-axis (upper), D2-axis 
(middle) and D3-axis (lower). 
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Figure A-134.  FFT data from the pelvis accelerometer for a metal-on-polyethylene THA, 
subjected to a 1280 Newton impact load.  The signals are for the A1-axis (upper), A2-axis 

(middle) and A3-axis (lower).  
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Figure A-135.  FFT data from the acetabular cup accelerometer for a metal-on-polyethylene THA, 

subjected to a 1280 Newton impact load.  The signals are for the B1-axis (upper), B2-axis 
(middle) and B3-axis (lower).  
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Figure A-136.  FFT data from the femoral stem accelerometer for a metal-on-polyethylene THA, 

subjected to a 1280 Newton impact load.  The signals are for the C1-axis (upper), C2-axis 
(middle) and C3-axis (lower).  
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Figure A-137.  FFT data from the greater trochanter accelerometer for a metal-on-polyethylene 
THA, subjected to a 1280 Newton impact load.  The signals are for the D1-axis (upper), D2-axis 

(middle) and D3-axis (lower). 
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Figure A-138.  FFT data from the pelvis accelerometer for a metal-on-metal THA, subjected to a 
1280 Newton impact load.  The signals are for the A1-axis (upper), A2-axis (middle) and A3-axis 

(lower).  
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Figure A-139.  FFT data from the acetabular cup accelerometer for a metal-on-metal THA, 
subjected to a 1280 Newton impact load.  The signals are for the B1-axis (upper), B2-axis 

(middle) and B3-axis (lower). 
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Figure A-140.  FFT data from the femoral stem accelerometer for a metal-on-metal THA, 
subjected to a 1280 Newton impact load.  The signals are for the C1-axis (upper), C2-axis 

(middle) and C3-axis (lower).  
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Figure A-141.  FFT data from the greater trochanter accelerometer for a metal-on-metal THA, 

subjected to a 1280 Newton impact load.  The signals are for the D1-axis (upper), D2-axis 
(middle) and D3-axis (lower). 
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Figure A-142.  FFT data from the pelvis accelerometer for a ceramic-on-ceramic THA, subjected 
to a 1280 Newton impact load.  The signals are for the A1-axis (upper), A2-axis (middle) and A3-

axis (lower).  
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Figure A-143.  FFT data from the acetabular cup accelerometer for a ceramic-on-ceramic THA, 

subjected to a 1280 Newton impact load.  The signals are for the B1-axis (upper), B2-axis 
(middle) and B3-axis (lower).  



173 

0

20000

40000

60000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Frequency (Hz)

M
ag

ni
tu

de
 

 

0

20000

40000

60000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Frequency (Hz)

M
ag

ni
tu

de
 

 

0

20000

40000

60000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Frequency (Hz)

M
ag

ni
tu

de
 

 
Figure A-144.  FFT data from the femoral stem accelerometer for a ceramic-on-ceramic THA, 

subjected to a 1280 Newton impact load.  The signals are for the C1-axis (upper), C2-axis 
(middle) and C3-axis (lower).  
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Figure A-145.  FFT data from the greater trochanter accelerometer for a ceramic-on-ceramic THA, 

subjected to a 1280 Newton impact load.  The signals are for the D1-axis (upper), D2-axis 
(middle) and D3-axis (lower). 
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Figure A-146.  FFT data from the pelvis accelerometer for a metal-on-polyethylene THA, 
subjected to a 1500 Newton impact load.  The signals are for the A1-axis (upper), A2-axis 

(middle) and A3-axis (lower).  
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Figure A-147.  FFT data from the acetabular cup accelerometer for a metal-on-polyethylene THA, 

subjected to a 1500 Newton impact load.  The signals are for the B1-axis (upper), B2-axis 
(middle) and B3-axis (lower).  
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Figure A-148.  FFT data from the femoral stem accelerometer for a metal-on-polyethylene THA, 

subjected to a 1500 Newton impact load.  The signals are for the C1-axis (upper), C2-axis 
(middle) and C3-axis (lower). 
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Figure A-149.  FFT data from the greater trochanter accelerometer for a metal-on-polyethylene 
THA, subjected to a 1500 Newton impact load.  The signals are for the D1-axis (upper), D2-axis 

(middle) and D3-axis (lower). 
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Figure A-150.  FFT data from the pelvis accelerometer for a metal-on-metal THA, subjected to a 
1500 Newton impact load.  The signals are for the A1-axis (upper), A2-axis (middle) and A3-axis 

(lower).  
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Figure A-151.  FFT data from the acetabular cup accelerometer for a metal-on-metal THA, 
subjected to a 1500 Newton impact load.  The signals are for the B1-axis (upper), B2-axis 

(middle) and B3-axis (lower). 
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Figure A-152.  FFT data from the femoral stem accelerometer for a metal-on-metal THA, 
subjected to a 1500 Newton impact load.  The signals are for the C1-axis (upper), C2-axis 

(middle) and C3-axis (lower). 
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Figure A-153.  FFT data from the greater trochanter accelerometer for a metal-on-metal THA, 

subjected to a 1500 Newton impact load.  The signals are for the D1-axis (upper), D2-axis 
(middle) and D3-axis (lower). 
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Figure A-154.  FFT data from the pelvis accelerometer for a ceramic-on-ceramic THA, subjected 
to a 1500 Newton impact load.  The signals are for the A1-axis (upper), A2-axis (middle) and A3-

axis (lower).  
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Figure A-155.  FFT data from the acetabular cup accelerometer for a ceramic-on-ceramic THA, 

subjected to a 1500 Newton impact load.  The signals are for the B1-axis (upper), B2-axis 
(middle) and B3-axis (lower).  
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Figure A-156.  FFT data from the femoral stem accelerometer for a ceramic-on-ceramic THA, 

subjected to a 1500 Newton impact load.  The signals are for the C1-axis (upper), C2-axis 
(middle) and C3-axis (lower).  
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Figure A-157.  FFT data from the greater trochanter accelerometer for a ceramic-on-ceramic 
THA, subjected to a 1500 Newton impact load.  The signals are for the D1-axis (upper), D2-axis 

(middle) and D3-axis (lower). 
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Figure A-158.  FFT data from the pelvis accelerometer for a metal-on-polyethylene THA, 
subjected to a 1730 Newton impact load.  The signals are for the A1-axis (upper), A2-axis 

(middle) and A3-axis (lower).  
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Figure A-159.  FFT data from the acetabular cup accelerometer for a metal-on-polyethylene THA, 

subjected to a 1730 Newton impact load.  The signals are for the B1-axis (upper), B2-axis 
(middle) and B3-axis (lower).  
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Figure A-160.  FFT data from the femoral stem accelerometer for a metal-on-polyethylene THA, 

subjected to a 1730 Newton impact load.  The signals are for the C1-axis (upper), C2-axis 
(middle) and C3-axis (lower). 
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Figure A-161.  FFT data from the greater trochanter accelerometer for a metal-on-polyethylene 
THA, subjected to a 1730 Newton impact load.  The signals are for the D1-axis (upper), D2-axis 

(middle) and D3-axis (lower). 
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Figure A-162.  FFT data from the pelvis accelerometer for a metal-on-metal THA, subjected to a 
1730 Newton impact load.  The signals are for the A1-axis (upper), A2-axis (middle) and A3-axis 

(lower).  
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Figure A-163.  FFT data from the acetabular cup accelerometer for a metal-on-metal THA, 
subjected to a 1730 Newton impact load.  The signals are for the B1-axis (upper), B2-axis 

(middle) and B3-axis (lower). 
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Figure A-164.  FFT data from the femoral stem accelerometer for a metal-on-metal THA, 
subjected to a 1730 Newton impact load.  The signals are for the C1-axis (upper), C2-axis 

(middle) and C3-axis (lower).  
 
 
 

0

20000

40000

60000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Frequency (Hz)

M
ag

ni
tu

de
 

 

0

20000

40000

60000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Frequency (Hz)

M
ag

ni
tu

de
 

 

0

20000

40000

60000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Frequency (Hz)

M
ag

ni
tu

de
 

 
Figure A-165.  FFT data from the greater trochanter accelerometer for a metal-on-metal THA, 

subjected to a 1730 Newton impact load.  The signals are for the D1-axis (upper), D2-axis 
(middle) and D3-axis (lower). 
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Figure A-166.  FFT data from the pelvis accelerometer for a ceramic-on-ceramic THA, subjected 
to a 1730 Newton impact load.  The signals are for the A1-axis (upper), A2-axis (middle) and A3-

axis (lower).  
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Figure A-167.  FFT data from the acetabular cup accelerometer for a ceramic-on-ceramic THA, 

subjected to a 1730 Newton impact load.  The signals are for the B1-axis (upper), B2-axis 
(middle) and B3-axis (lower).  
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Figure A-168.  FFT data from the femoral stem accelerometer for a ceramic-on-ceramic THA, 

subjected to a 1730 Newton impact load.  The signals are for the C1-axis (upper), C2-axis 
(middle) and C3-axis (lower).  
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Figure A-169.  FFT data from the greater trochanter accelerometer for a ceramic-on-ceramic 

THA, subjected to a 1730 Newton impact load.  The signals are for the D1-axis (upper), D2-axis 
(middle) and D3-axis (lower). 
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Figure A-170.  FFT data from the pelvis accelerometer for a metal-on-polyethylene THA, 
subjected to a 1900 Newton impact load.  The signals are for the A1-axis (upper), A2-axis 

(middle) and A3-axis (lower).  
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Figure A-171.  FFT data from the acetabular cup accelerometer for a metal-on-polyethylene THA, 

subjected to a 1900 Newton impact load.  The signals are for the B1-axis (upper), B2-axis 
(middle) and B3-axis (lower).  
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Figure A-172.  FFT data from the femoral stem accelerometer for a metal-on-polyethylene THA, 

subjected to a 1900 Newton impact load.  The signals are for the C1-axis (upper), C2-axis 
(middle) and C3-axis (lower). 
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Figure A-173.  FFT data from the greater trochanter accelerometer for a metal-on-polyethylene 
THA, subjected to a 1900 Newton impact load.  The signals are for the D1-axis (upper), D2-axis 

(middle) and D3-axis (lower). 
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Figure A-174.  FFT data from the pelvis accelerometer for a metal-on-metal THA, subjected to a 
1900 Newton impact load.  The signals are for the A1-axis (upper), A2-axis (middle) and A3-axis 

(lower).  
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Figure A-175.  FFT data from the acetabular cup accelerometer for a metal-on-metal THA, 
subjected to a 1900 Newton impact load.  The signals are for the B1-axis (upper), B2-axis 

(middle) and B3-axis (lower). 
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Figure A-176.  FFT data from the femoral stem accelerometer for a metal-on-metal THA, 
subjected to a 1900 Newton impact load.  The signals are for the C1-axis (upper), C2-axis 

(middle) and C3-axis (lower).  
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Figure A-177.  FFT data from the greater trochanter accelerometer for a metal-on-metal THA, 

subjected to a 1900 Newton impact load.  The signals are for the D1-axis (upper), D2-axis 
(middle) and D3-axis (lower). 
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Figure A-178.  FFT data from the pelvis accelerometer for a ceramic-on-ceramic THA, subjected 
to a 1900 Newton impact load.  The signals are for the A1-axis (upper), A2-axis (middle) and A3-

axis (lower).  
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Figure A-179.  FFT data from the acetabular cup accelerometer for a ceramic-on-ceramic THA, 

subjected to a 1900 Newton impact load.  The signals are for the B1-axis (upper), B2-axis 
(middle) and B3-axis (lower).  
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Figure A-180.  FFT data from the femoral stem accelerometer for a ceramic-on-ceramic THA, 

subjected to a 1900 Newton impact load.  The signals are for the C1-axis (upper), C2-axis 
(middle) and C3-axis (lower).  
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Figure A-181.  FFT data from the greater trochanter accelerometer for a ceramic-on-ceramic 

THA, subjected to a 1900 Newton impact load.  The signals are for the D1-axis (upper), D2-axis 
(middle) and D3-axis (lower). 
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