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Abstract

Previous schemes for sorting on general-purpose parallel machines have had to choose between
poor load balancing and irregular communication or multiple rounds of all-to-all personalized com-
munication. In this paper, we introduce a novel variation on sample sort which uses only two rounds
of regular all-to-all personalized communication in a scheme that yields very good load balancing
with virtually no overhead. Moreover, unlike previous variations, our algorithm e�ciently handles the
presence of duplicate values without the overhead of tagging each element with a unique identi�er.
This algorithm was implemented in Split-C and run on a variety of platforms, including the Thinking
Machines CM-5, the IBM SP-2, and the Cray Research T3D. We ran our code using widely di�erent
benchmarks to examine the dependence of our algorithm on the input distribution. Our experimental
results illustrate the e�ciency and scalability of our algorithm across di�erent platforms. In fact, it
seems to outperform all similar algorithms known to the authors on these platforms, and its perfor-
mance is invariant over the set of input distributions unlike previous e�cient algorithms. Our results
also compare favorably with those reported for the simpler ranking problem posed by the NAS Integer
Sorting (IS) Benchmark.
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1 Introduction

Sorting is arguably the most studied problem in computer science, both because of its intrinsic theo-

retical importance and its use in so many applications. Its signi�cant requirements for interprocessor

communication bandwidth and the irregular communication patterns that are typically generated

have earned its inclusion in several parallel benchmarks such as NAS [7] and SPLASH [34]. Moreover,

its practical importance has motivated the publication of a number of empirical studies seeking to

identify the most e�cient sorting routines. Yet, parallel sorting strategies have still generally fallen

into one of two groups, each with its respective disadvantages. The �rst group, using the classi�cation

of Li and Sevcik [23], is the single-step algorithms, so named because data is moved exactly once

between processors. Examples of this include sample sort [21, 10], parallel sorting by regular sampling

[31, 24], and parallel sorting by overpartitioning [23]. The price paid by these single-step algorithms

is an irregular communication scheme and di�culty with load balancing. The other group of sorting

algorithms is the multi-step algorithms, which include bitonic sort [9], column sort [22], rotate sort

[25], hyperquicksort [28], ashsort [29], B-ashsort [20], smoothsort [27], and Tridgell and Brent's sort

[32]. Generally speaking, these algorithms accept multiple rounds of communication in return for

better load balancing and, in some cases, regular communication.

In this paper, we present a novel variation on the sample sort algorithm [19] which addresses the

limitations of previous implementations. We exchange the single step of irregular communication for

two steps of regular communication. In return, we reduce the problem of poor load balancing because

we are able to sustain a very high oversampling ratio at virtually no cost. Second, we e�ciently

accommodate the presence of duplicates without the overhead of tagging each element. And we obtain

predictable, regular communication requirements which are essentially invariant with respect to the

input distribution. Utilizing regular communication has become more important with the advent of

message passing standards, such as MPI [26], which seek to guarantee the availability of very e�cient

(often machine speci�c) implementations of certain basic collective communication routines.

Our algorithm was implemented in a high-level language and run on a variety of platforms, includ-

ing the Thinking Machines CM-5, the IBM SP-2, and the Cray Research T3D. We ran our code using

a variety of benchmarks that we identi�ed to examine the dependence of our algorithm on the input

distribution. Our experimental results are consistent with the theoretical analysis and illustrate the

scalability and e�ciency of our algorithm across di�erent platforms. In fact, it seems to outperform

all similar algorithms known to the authors on these platforms, and its performance is indi�erent to

the set of input distributions unlike previous e�cient algorithms.

The high-level language used in our studies is Split-C [14], an extension of C for distributed

memory machines. The algorithm makes use of MPI-like communication primitives but does not

make any assumptions as to how these primitives are actually implemented. The basic data transport
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is a read or write operation. The remote read and write typically have both blocking and non-

blocking versions. Also, when reading or writing more than a single element, bulk data transports are

provided with corresponding bulk read and bulk write primitives. Our collective communication

primitives, described in detail in [6], are similar to those of the MPI [26], the IBM POWERparallel [8],

and the Cray MPP systems [13] and, for example, include the following: transpose, bcast, gather,

and scatter. Brief descriptions of these are as follows. The transpose primitive is an all-to-all

personalized communication in which each processor has to send a unique block of data to every

processor, and all the blocks are of the same size. The bcast primitive is used to copy a block of data

from a single source to all the other processors. The primitives gather and scatter are companion

primitives. Scatter divides a single array residing on a processor into equal-sized blocks, each of

which is distributed to a unique processor, and gather coalesces these blocks back into a single array

at a particular processor. See [3, 6, 4, 5] for algorithmic details, performance analyses, and empirical

results for these communication primitives.

The organization of this paper is as follows. Section 2 presents our computation model for

analyzing parallel algorithms. Section 3 describes in detail our improved sample sort algorithm.

Finally, Section 4 describes our data sets and the experimental performance of our sorting algorithm.

2 The Parallel Computation Model

We use a simple model to analyze the performance of our parallel algorithms. Our model is based on

the fact that current hardware platforms can be viewed as a collection of powerful processors connected

by a communication network that can be modeled as a complete graph on which communication is

subject to the restrictions imposed by the latency and the bandwidth properties of the network. We

view a parallel algorithm as a sequence of local computations interleaved with communication steps,

where we allow computation and communication to overlap. We account for communication costs as

follows.

Assuming no congestion, the transfer of a block consisting of m contiguous words between two

processors takes (� + �m) time, where � is the latency of the network and � is the time per word at

which a processor can inject or receive data from the network. Note that the bandwidth per processor

is inversely proportional to �. We assume that the bisection bandwidth is su�ciently high to support

block permutation routing amongst the p processors at the rate of 1
�
. In particular, for any subset of

q processors, a block permutation amongst the q processors takes (� + �m) time, where m is the size

of the largest block.

Using this cost model, we can evaluate the communication time Tcomm(n; p) of an algorithm as a

function of the input size n, the number of processors p , and the parameters � and �. The coe�cient

of � gives the total number of times collective communication primitives are used, and the coe�cient
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of � gives the maximum total amount of data exchanged between a processor and the remaining

processors.

This communication model is close to a number of similar models (e.g. [16, 33, 1]) that have

recently appeared in the literature and seems to be well-suited for designing parallel algorithms on

current high performance platforms.

We de�ne the computation time Tcomp as the maximum time it takes a processor to perform all the

local computation steps. In general, the overall performance Tcomp+Tcomm involves a tradeo� between

Tcomp and Tcomm. In many cases, it is possible to minimize both Tcomp and Tcomm simultaneously,

and sorting is such a case.

3 A New Sample Sort Algorithm

Consider the problem of sorting n elements equally distributed amongst p processors, where we assume

without loss of generality that p divides n evenly. The idea behind sample sort is to �nd a set of p� 1

splitters to partition the n input elements into p groups indexed from 1 up to p such that every element

in the ith group is less than or equal to each of the elements in the (i+ 1)th group, for 1 � i � p� 1.

Then the task of sorting each of the p groups can be turned over to the correspondingly indexed

processor, after which the n elements will be arranged in sorted order. The e�ciency of this algorithm

obviously depends on how evenly we divide the input, and this in turn depends on how well we choose

the splitters. One way to choose the splitters is by randomly sampling the input elements at each

processor - hence the name sample sort.

Previous versions of sample sort [21, 10, 17, 15] have randomly chosen s samples from the n
p
elements

at each processor, routed these ps samples to a single processor, sorted them at that processor, and

then selected every sth element as a splitter. Each processor Pi then performs a binary search on these

splitters for each of its input values and then uses the results to route the values to the appropriate

destination, after which local sorting is done to complete the sorting process. The �rst di�culty with

this approach is the work involved in gathering and sorting the samples. A larger value of s results in

better load balancing, but it also increases the overhead. The second di�culty is that no matter how

the routing is scheduled, there exist inputs that give rise to large variations in the number of elements

destined for di�erent processors, and this in turn results in an ine�cient use of the communication

bandwidth. Moreover, such an irregular communication scheme cannot take advantage of the regular

communication primitives proposed under the MPI standard [26]. The �nal di�culty with the original

approach is that duplicate values are accommodated by tagging each item with a unique value [10].

This, of course, doubles the cost of both memory access and interprocessor communication.

In our solution, we incur no overhead in obtaining n
p2

samples from each processor and in sorting

these samples to identify the splitters. Because of this very high oversampling, we are able to replace
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the irregular routing with exactly two calls to our transpose primitive, and, in addition, we are able

to e�ciently accommodate the presence of duplicates without resorting to tagging.

The pseudocode for our algorithm is as follows:

� Step (1): Each processor Pi (1 � i � p) randomly assigns each of its n
p
elements to one of p

buckets. With high probability, no bucket will receive more than c1
n
p2

elements, where c1 is a

constant to be de�ned later.

� Step (2): Each processor Pi routes the contents of bucket j to processor Pj , for (1 � i; j � p).

Since with high probability no bucket will receive more than c1
n
p2

elements, this is equivalent to

performing a transpose operation with block size c1
n
p2
.

� Step (3): Each processor Pi sorts at most
�
�1

n
p
� c1

n
p

�
values received in Step (2) using an

appropriate sequential sorting algorithm. For integers we use the radix sort algorithm, whereas

for oating point numbers we use the merge sort algorithm.

� Step (4): From its sorted list of
�
� n
p
� c1

n
p

�
elements, processor P1 selects each

�
j� n

p2

�th
element as Splitter[j], for (1 � j � p � 1). By default, Splitter[p] is the largest value allowed

by the data type used. Additionally, for each Splitter[j], binary search is used to determine the

values FracL[j] and FracR[j], which are respectively the fractions of the total number of elements

at processor P1 with the same value as Splitter[j�1] and Splitter[j] which also lie between index�
(j � 1)� n

p2
+ 1

�
and index

�
j� n

p2

�
, inclusively.

� Step (5): Processor P1 broadcasts the Splitter, FracL, and FracR arrays to the other p � 1

processors.

� Step (6): Each processor Pi uses binary search on its sorted local array to de�ne for each of

the p splitters a subsequence Sj . The subsequence associated with Splitter[j] contains all those

values which are greater than Splitter[j � 1] and less than Splitter[j], as well as FracL[j] and

FracR[j] of the total number of elements in the local array with the same value as Splitter[j� 1]

and Splitter[j], respectively.

� Step (7): Each processor Pi routes the subsequence associated with Splitter[j] to processor Pj ,

for (1 � i; j � p). Since with high probability no sequence will contain more than c2
n
p2

elements,

where c2 is a constant to be de�ned later, this is equivalent to performing a transpose operation

with block size c2
n
p2
.

� Step (8): Each processor Pi merges the p sorted subsequences received in Step (7) to produce

the ith column of the sorted array. Note that, with high probability, no processor has received

more than �2
n
p
elements, where �2 is a constant to be de�ned later.

We can establish the complexity of this algorithm with high probability - that is with probability
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� (1 � n��) for some positive constant �. But before doing this, we need to establish the results of

the following lemmas.

Lemma 1: At the completion of Step (1), the number of elements in each bucket is at most c1
n
p2

with high probability, for any c1 � 2 and p2 � n
3 lnn .

Proof: The probability that exactly c1
n
p2

elements are placed in a particular bucket in Step (1) is

given by the binomial distribution

b(s; r; q) =

 
r

s

!
qs (1� q)r�s ; (1)

where s = c1
n
p2
, r = n

p
, and q = 1

p
. Using the following Cherno� bound [12] for estimating the tail of

a binomial distribution X
s�(1+�)rq

b (s; r; q)� e�
�2rq
3 ; (2)

the probability that a particular bucket will contain at least c1
n
p2

elements can be bounded by

e
�(c1�1)

2 n

3p2 : (3)

Hence, the probability that any of the p2 buckets contains at least c1
n
p2

elements can be bounded by

p2e
�(c1�1)

2 n

3p2 (4)

and Lemma 1 follows.

Lemma 2: At the completion of Step (2), the total number of elements received by processor

P1, which comprise the set of samples from which the splitters are chosen, is at most � n
p
with high

probability, for any � � 1 and p2 � n
3 lnn .

Proof: The probability that processor P1 receives exactly � n
p
elements is given by the binomial

distribution b
�
� n
p
;n; 1

p

�
. Using the Cherno� bound for estimating the tail of a binomial distribution,

the probability that processor P1 receives at least � n
p
elements can be bounded by e

�(��1)2 n
3p and

Lemma 2 follows.

Lemma 3: For each Splitter[j], where (1 � j � p), let SEj and SSj be respectively the sets of input

elements and samples that are both equal in value to Splitter[j], and let jSSj j � �j
n
p2
. Then, with

high probability, no SEj will contain more than Mj
n
p
elements, where

Mj =
(6�j + 1) +

p
12�j + 1

6
: (5)

Proof: The set of input elements SEj = fxj1 ; xj2 ; :::; xjljg can have more than Mj
n
p
members only if

�j
n
p2

or less members are selected to be samples from the set SE0j = fxj1 ; xj2 ; :::; xj(Mj
n
p )
g, which is the
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set composed of the �rst Mj
n
p
members in SEj . However, since each element of SE0j is independently

chosen to be a sample with probability 1
p
, the probability of this event occurring is given by

X
s��j

n
p

b

�
s;Mj

n

p
;
1

p

�
: (6)

Using the following \Cherno�" type bound [18] for estimating the head of a binomial distribution

X
s��rq

b (s; r; q) � e�(1��)
2 rq

2 ; (7)

where s � �j
n
p2
, r = Mj

n
p
, and q = 1

p
, it follows that the probability that a set SEj among the p sets

of input elements has more than Mj
n
p
is bounded by

p�1X
i=0

e
�

�
1�

�j
Mj

�
2
Mjn

2p2 : (8)

Using the fact that p2 � n
3 lnn , it is easy to show that the above sum can be bounded by n��, for some

� > 0 and

Mj =
(6�j + 1) +

p
12�j + 1

6
: (9)

The bound of Lemma 3 will also hold if we include the subsets of elements and samples whose

values fall strictly between two consecutive splitters.

Lemma 4: At the completion of Step (7), the number of elements received by each processor is at

most �2
n
p
with high probability, for any �2 � 2:62 (�2 � 1:77 without duplicates) and p2 � n

3 lnn .

Proof: Let Q be the set of input elements to be sorted by our algorithm, let R be the set of samples

of Step (4) at processor P1 with cardinality � n
p
, and and let S be the subset of R associated with

Splitter[j], which we de�ne to be the samples in R with indices
�
(j � 1)

�
� n
p2

�
+ 1

�
through

�
j� n

p2

�
,

inclusively. Let Q1
n
p
, R1

n
p2
, and S1

n
p2

be respectively the number of elements in Q, R, and S with

value equal to Splitter[j � 1], let Q2
n
p
, R2

n
p2
, and S2

n
p2

be respectively the number of elements in Q,

R, and S with values greater than Splitter[j � 1] but less than Splitter[j], and let Q3
n
p
, R3

n
p2
, and

S3
n
p2

be respectively the number of elements in Q, R, and S with value equal to Splitter[j].

According to Step (6) of our algorithm, processor Pj will receive

��
FracL[j]�Q1

�
+ Q2 +

�
FracR[j]�Q3

�� n
p
=

�
S1

R1
Q1 +Q2 +

S3

R3
Q3

�
n

p
(10)

elements. To compute the upper bound �2
n
p
on this expression, we �rst use Lemma 3 to bound each

Qi
n
p
, giving us

 
S1

R1

 
(6R1 + 1) +

p
12R1 + 1

6

!
+

 
(6S2 + 1) +

p
12S2 + 1

6

!
+

S3

R3

 
(6R3+ 1) +

p
12R3 + 1

6

!!
n

p

(11)

7



Rearranging this expression, we get:

 
S1

 
1 +

1

6R1
+

s
1

3R1
+

1

36R2
1

!
+

 
(6S2 + 1) +

p
12S2 + 1

6

!

+S3

 
1 +

1

6R3
+

s
1

3R3
+

1

36R2
3

!!
n

p
(12)

Clearly, this expression is maximized for R1 = S1 and R3 = S3. Substituting these values and

rearranging once again, we get:  
(6S1 + 1) +

p
12S1 + 1

6

!
+

 
(6S2 + 1) +

p
12S2 + 1

6

!
+

 
(6S3 + 1) +

p
12S3 + 1

6

!!
n

p
(13)

Since S1 + S2 + S3 = �, this expression is maximized for S1 = S2 = S3 = �
3 : Since Lemma 2

guarantees that with high probability � � 1, Lemma 4 follows with high probability for �2 � 2:62.

Alternatively, if there are no duplicates, we can show that the bound follows with high probability for

�2 � 1:77.

Lemma 5: If the set of input elements is arbitrarily partitioned into at most 2p subsets, each of size

Xi
n
p
(1 � i � 2p), with high probability at the conclusion of Step (2) no processor will receive more

than Yi
n
p2

elements from any particular subset, for Yi � (Xi +
p
Xi) and p2 � n

3 lnn .

Proof: The probability that exactly Yi
n
p2

elements are sent to a particular processor by the conclusion

of Step (2) is given by the binomial distribution b(Yi
n
p2
;Xi

n
p
; 1
p
). Using the Cherno� bound for

estimating the tail of a binomial distribution, the probability that from M possible subsets any

processor will receive at least Yi
n
p2

elements can be bounded by

MX
i=1

pe
�

�
1�

Yi
Xi

�
2
Xin

3p2 (14)

and Lemma 5 follows for M � 2p.

Lemma 6: The number of elements exchanged by any two processors in Step (7) is at most c2
n
p2

with high probability, for any c2 � 5:42 (c2 � 3:10 without duplicates) and p2 � n
3 lnn .

Proof: Let U be the set of input elements to be sorted by our algorithm, let V be the set of elements

held by intermediate processor Pi after Step (2), and let W be the set of elements held by destination

processor Pj after Step (7). Let U1
n
p
, V1

n
p2
, and W1

n
p
be respectively the number of elements in U ,

V , and W with values equal to Splitter[j � 1], let U2
n
p
, V2

n
p2
, and W2

n
p
be respectively the number

of elements in U , V , and W with values greater than Splitter[j � 1] but less than Splitter[j], and let

U3
n
p
, V3

n
p2
, and W3

n
p
be respectively the number of elements in U , V , and W with values equal to

Splitter[j].
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According to Step (6) of our algorithm, intermediate processor Pi will send

��
FracL[j]� V1

�
+ V2 +

�
FracR[j]� V3

�� n
p2

(15)

elements to processor Pj . To compute the upper bound c2
n
p2

on this expression, we �rst use Lemma

5 to bound each Vk, giving us:

��
FracL[j]�

�
U1 +

p
U1

��
+
�
U2 +

p
U2

�
+
�
FracR[j]�

�
U3 +

p
U3

��� n

p2
(16)

Notice that since destination processor Pj receives respectively FracL[j] and FracR[j] of the elements

at each intermediate processor with values equal to Splitter[j � 1] and Splitter[j], it follows that

W1 = FracL[j]� U1 and W3 = FracR[j]� U3. Hence, we can rewrite the expression above as�
W1

U1

�
U1 +

p
U1

�
+
�
U2 +

p
U2

�
+
W3

U3

�
U3 +

p
U3

�� n

p2
(17)

Rearranging this expression, we get: 
W1

 
1 +

s
1

U1

!
+
�
U2 +

p
U2

�
+W3

 
1 +

s
1

U3

!!
n

p2
(18)

Clearly, this expression is maximized for U1 = W1 and U3 = W3. Substituting these values and

rearranging, we get: �
W1 +

p
W1 +W2 +

p
W2 +W3 +

p
W3

� n

p2
(19)

Since W1 +W2 +W3 = �2, this expression is maximized for W1 = W2 = W3 =
�2
3 : Since Lemma 4

guarantees that with high probability �2 � 2:62, Lemma 6 follows with high probability for c2 � 5:24.

Alternatively, if there are no duplicates, we can show that the bound follows with high probability for

c2 � 3:10.

With these bounds on the values of c1, �2, and c2, the analysis of our sample sort algorithm

is as follows. Steps (1), (3), (4), (6), and (8) involve no communication and are dominated by

the cost of the sequential sorting in Step (3) and the merging in Step (8). Sorting integers us-

ing radix sort requires O
�
n
p

�
time, whereas sorting oating point numbers using merge sort requires

O
�
n
p
log
�
n
p

��
time. Step (8) requires O

�
n
p
log p

�
time if we merge the sorted subsequences in a

binary tree fashion. Steps (2), (5), and (7) call the communication primitives transpose, bcast,

and transpose, respectively. The analysis of these primitives in [6] shows that with high proba-

bility these three steps require Tcomm(n; p) �
�
� + 2 n

p2
(p� 1)�

�
, Tcomm(n; p) � (� + 2(p� 1)�), and

Tcomm(n; p) �
�
� + 5:24 n

p2
(p� 1)�

�
, respectively. Hence, with high probability, the overall complexity

of our sample sort algorithm is given (for oating point numbers) by

T (n; p) = Tcomp(n; p) + Tcomm(n; p)

= O

�
n

p
logn + � +

n

p
�

�
(20)
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for p2 < n
3 lnn .

Clearly, our algorithm is asymptotically optimal with very small coe�cients. But a theoretical

comparison of our running time with previous sorting algorithms is di�cult, since there is no consensus

on how to model the cost of the irregular communication used by the most e�cient algorithms.

Hence, it is very important to perform an empirical evaluation of an algorithm using a wide variety

of benchmarks, as we will do next.

4 Performance Evaluation

Our sample sort algorithm was implemented using Split-C [14] and run on a variety of machines and

processors, including the Cray Research T3D, the IBM SP-2-WN, and the Thinking Machines CM-5.

For every platform, we tested our code on eight di�erent benchmarks, each of which had both a 32-bit

integer version (64-bit on the Cray T3D) and a 64-bit double precision oating point number (double)

version.

4.1 Sorting Benchmarks

Our eight sorting benchmarks are de�ned as follows, in which n and p are assumed for simplicity to

be powers of two and MAXD, the maximum value allowed for doubles, is approximately 1:8� 10308.

1. Uniform [U], a uniformly distributed random input, obtained by calling the C library random

number generator random(). This function, which returns integers in the range 0 to
�
231 � 1

�
, is

seeded by each processor Pi with the value (21+1001i). For the double data type, we \normalize"

the integer benchmark values by �rst subtracting the value 230 and then scaling the result by�
2�30 �MAXD

�
.

2. Gaussian [G], a Gaussian distributed random input, approximated by adding four calls to

random() and then dividing the result by four. For the double data type, we normalize the

integer benchmark values in the manner described for [U].

3. Zero [Z], a zero entropy input, created by setting every value to a constant such as zero.

4. Bucket Sorted [B], an input that is sorted into p buckets, obtained by setting the �rst n
p2

elements at each processor to be random numbers between 0 and
�
231

p
� 1

�
, the second n

p2

elements at each processor to be random numbers between 231

p
and

�
232

p
� 1

�
, and so forth. For

the double data type, we normalize the integer benchmark values in the manner described for

[U].

5. g-Group [g-G], an input created by �rst dividing the processors into groups of consecutive pro-

cessors of size g, where g can be any integer which partitions p evenly. If we index these groups in
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consecutive order from 1 up to p
g
, then for group j we set the �rst n

pg
elements to be random num-

bers between
���

(j � 1) g + p
2 � 1

�
mod p

�
+ 1

� 231

p
and

����
(j � 1) g + p

2

�
mod p

�
+ 1

� 231

p
� 1

�
,

the second n
pg

elements at each processor to be random numbers between���
(j � 1) g + p

2

�
mod p

�
+ 1

� 231

p
and

����
(j � 1) g + p

2 + 1
�
mod p

�
+ 1

� 231

p
� 1

�
, and so forth.

For the double data type, we normalize the integer benchmark values in the manner described

for [U].

6. Staggered [S], created as follows: if the processor index i is less than or equal to p
2 , then

we set all n
p
elements at that processor to be random numbers between

�
(2i� 1) 231

p

�
and�

(2i) 231

p
� 1

�
. Otherwise, we set all n

p
elements to be random numbers between

�
(2i� p� 2) 231

p

�
and

�
(2i� p� 1) 231

p
� 1

�
. For the double data type, we normalize the integer benchmark values

in the manner described for [U].

7. Deterministic Duplicates [DD], an input of duplicates in which we set all n
p
elements at each

of the �rst p
2 processors to be logn, all

n
p
elements at each of the next p

4 processors to be log
�
n
2

�
,

and so forth. At processor Pp, we set the �rst
n
2p elements to be log

�
n
p

�
, the next n

4p elements

to be log
�
n
2p

�
, and so forth.

8. Randomized Duplicates [RD], an input of duplicates in which each processor �lls an array

T with some constant number range (range is 32 for our work) of random values between 0 and

(range�1) whose sum is S. The �rst
T [1]
S
� n

p
values of the input are then set to a random value

between 0 and (range� 1), the next T [2]
S
� n

p
values of the input are then set to another random

value between 0 and (range� 1), and so forth.

We selected these eight benchmarks for a variety of reasons. Previous researchers have used the

Uniform,Gaussian, and Zero benchmarks, and so we too included them for purposes of comparison.

But benchmarks should be designed to illicit the worst case behavior from an algorithm, and in this

sense the Uniform benchmark is not appropriate. For example, for n � p, one would expect that

the optimal choice of the splitters in the Uniform benchmark would be those which partition the

range of possible values into equal intervals. Thus, algorithms which try to guess the splitters might

perform misleadingly well on such an input. In this respect, the Gaussian benchmark is more telling.

But we also wanted to �nd benchmarks which would evaluate the cost of irregular communication.

Thus, we wanted to include benchmarks for which an algorithm which uses a single phase of routing

would �nd contention di�cult or even impossible to avoid. A naive approach to rearranging the

data would perform poorly on the Bucket Sorted benchmark. Here, every processor would try to

route data to the same processor at the same time, resulting in poor utilization of communication

bandwidth. This problem might be avoided by an algorithm in which at each processor the elements

are �rst grouped by destination and then routed according to the speci�cations of a sequence of

p destination permutations. Perhaps the most straightforward way to do this is by iterating over
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the possible communication strides. But such a strategy would perform poorly with the g-Group

benchmark, for a suitably chosen value of g. In this case, using stride iteration, those processors

which belong to a particular group all route data to the same subset of g destination processors. This

subset of destinations is selected so that, when the g processors route to this subset, they choose the

processors in exactly the same order, producing contention and possibly stalling. Alternatively, one

can synchronize the processors after each permutation, but this in turn will reduce the communication

bandwidth by a factor of p
g
. In the worst case scenario, each processor needs to send data to a single

processor a unique stride away. This is the case of the Staggered benchmark, and the result is a

reduction of the communication bandwidth by a factor of p. Of course, one can correctly object that

both the g-Group benchmark and the Staggered benchmark have been tailored to thwart a routing

scheme which iterates over the possible strides, and that another sequences of permutations might be

found which performs better. This is possible, but at the same time we are unaware of any single

phase deterministic algorithm which could avoid an equivalent challenge. Finally, the Deterministic

Duplicates and the Randomized Duplicates benchmarks were included to assess the performance

of the algorithms in the presence of duplicate values.

4.2 Experimental Results

For each experiment, the input is evenly distributed amongst the processors. The output consists of

the elements in non-descending order arranged amongst the processors so that the elements at each

processor are in sorted order and no element at processor Pi is greater than any element at processor

Pj , for all i < j.

Two variations were allowed in our experiments. First, radix sort was used to sequentially sort

integers, whereas merge sort was used to sort double precision oating point numbers (doubles).

Second, di�erent implementations of the communication primitives were allowed for each machine.

Wherever possible, we tried to use the vendor supplied implementations. In fact, IBM does provide

all of our communication primitives as part of its machine speci�c Collective Communication Library

(CCL) [8] and MPI. As one might expect, they were faster than the high level Split-C implementation.

Size [U] [G] [2-G] [4-G] [B] [S] [Z] [DD] [RD]

256K 0.019 0.019 0.020 0.020 0.020 0.020 0.016 0.016 0.018

1M 0.068 0.068 0.070 0.070 0.070 0.069 0.054 0.054 0.058

4M 0.261 0.257 0.264 0.264 0.263 0.264 0.202 0.226 0.213

16M 1.02 1.01 1.02 1.02 1.02 1.02 0.814 0.831 0.826

64M 4.03 4.00 4.00 3.99 4.03 4.00 3.21 3.20 3.27

Table I: Total execution time (in seconds) required to sort a variety of integer benchmarks on a 64-node
Cray T3D.
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Size [U] [G] [2-G] [4-G] [B] [S] [Z] [DD] [RD]

256K 0.041 0.039 0.040 0.041 0.041 0.040 0.042 0.040 0.041

1M 0.071 0.071 0.074 0.072 0.076 0.072 0.071 0.070 0.070

4M 0.215 0.210 0.219 0.213 0.218 0.218 0.207 0.213 0.213

16M 0.805 0.806 0.817 0.822 0.830 0.818 0.760 0.760 0.783

64M 3.30 3.19 3.22 3.24 3.28 3.25 2.79 2.83 2.83

Table II: Total execution time (in seconds) required to sort a variety of integer benchmarks on a 64-node
IBM SP-2-WN.

Size [U] [G] [2-G] [4-G] [B] [S] [Z] [DD] [RD]

256K 0.022 0.022 0.023 0.023 0.023 0.022 0.021 0.021 0.021

1M 0.089 0.089 0.088 0.089 0.090 0.088 0.082 0.082 0.083

4M 0.366 0.366 0.364 0.366 0.364 0.362 0.344 0.344 0.341

16M 1.55 1.55 1.50 1.54 1.53 1.52 1.45 1.46 1.47

64M 6.63 6.54 6.46 6.44 6.46 6.52 6.23 6.25 6.24

Table III: Total execution time (in seconds) required to sort a variety of double benchmarks on a 64-node
Cray T3D.

Tables I, II, III, and IV display the performance of our sample sort as a function of input

distribution for a variety of input sizes. In each case, the performance is essentially independent

of the input distribution. These tables present results obtained on a 64 node Cray T3D and a 64

node IBM SP-2; results obtained from the TMC CM-5 validate this claim as well. Because of this

independence, the remainder of this section will only discuss the performance of our sample sort on

the single benchmark [U].

The results in Tables V and VI together with their graphs in Figure 1 examine the scalability

of our sample sort as a function of machine size. Results are shown for the T3D, the SP-2-WN, and

the CM-5. Bearing in mind that these graphs are log-log plots, they show that for a �xed input size

n the execution time scales almost inversely with the number of processors p. While this is certainly

the expectation of our analytical model for doubles, it might at �rst appear to exceed our prediction

of an O
�
n
p
log p

�
computational complexity for integers. However, the appearance of an inverse

relationship is still quite reasonable when we note that, for values of p between 8 and 128, log p varies

Size [U] [G] [2-G] [4-G] [B] [S] [Z] [DD] [RD]

256K 0.056 0.054 0.059 0.057 0.060 0.059 0.056 0.056 0.057

1M 0.153 0.152 0.158 0.156 0.163 0.156 0.151 0.146 0.147

4M 0.568 0.565 0.576 0.577 0.584 0.575 0.558 0.571 0.569

16M 2.23 2.23 2.24 2.28 2.26 2.25 2.20 2.22 2.26

64M 9.24 9.18 9.24 9.22 9.24 9.23 9.15 9.17 9.21

Table IV: Total execution time (in seconds) for required to sort a variety of double benchmarks on a 64-node
IBM SP-2-WN.
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Sample Sorting of 8M Integers [U]

Number of Processors
Machine 8 16 32 64 128

CRAY T3D 3.32 1.77 0.952 0.513 0.284

IBM SP2-WN 2.51 1.25 0.699 0.413 0.266

TMC CM-5 - 7.43 3.72 1.73 0.813

Table V: Total execution time (in seconds) required to sort 8M integers on a variety of machines and
processors using the [U] benchmark. A hyphen indicates that particular platform was unavailable to us.

Sample Sorting of 8M Doubles [U]

Number of Processors

Machine 8 16 32 64 128

CRAY T3D 5.48 2.78 1.44 0.747 0.392

IBM SP2-WN 7.96 4.02 2.10 1.15 0.635

TMC CM-5 - - 6.94 3.79 1.83

Table VI: Total execution time (in seconds) required to sort 8M doubles on a variety of machines and
processors using the [U] benchmark. A hyphen indicates that particular platform was unavailable to us.

by only a factor of 7
3 . Moreover, this O

�
n
p
log p

�
complexity is entirely due to the merging in Step

(8), and in practice, Step (8) never accounts for more than 30% of the observed execution time.

Note that the complexity of Step 8 could be reduced to O(n
p
) for integers using radix sort, but the

resulting execution time would, in most cases, be slower.

The graphs in Figure 2 examine the scalability of our sample sort as a function of problem size,

for di�ering numbers of processors. They show that for a �xed number of processors there is an

almost linear dependence between the execution time and the total number of elements n. While

this is certainly the expectation of our analytic model for integers, it might at �rst appear to exceed

our prediction of a O
�
n
p
log n

�
computational complexity for oating point values. However, this

appearance of a linear relationship is still quite reasonable when we consider that for the range of

values shown logn di�ers by only a factor of 1:2.

Next, the graphs in Figure 3 examine the relative costs of the eight steps in our sample sort.

Results are shown for both a 64 node T3D and a 64 node SP-2-WN, using both the integer and the

double versions of the [U] benchmark. Notice that for n = 64M integers, the sequential sorting and

merging performed in Steps (3) and (8) consume approximately 80% of the execution time on the

T3D and approximately 70% of the execution time on the SP-2. By contrast, the two transpose

operations in Steps (2) and (7) together consume only about 15% of the execution time on the T3D

and about 25% of the execution time on the SP-2. The di�erence in the distribution between these two

platforms is likely due in part to the fact that an integer is 64 bits on the T3D while only 32 bits on the

SP-2. By contrast, doubles are 64 bits on both platforms. For n = 64M doubles, the sequential sorting
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Figure 1: Scalability of sorting integers and doubles with respect to machine size.

and merging performed in Steps (3) and (8) consume approximately 80% of the execution time on

both platforms, whereas the two transpose operations in Steps (2) and (7) together consume only

about 15% of the execution time. Together, these results show that our algorithm is extremely e�cient

in its communication performance.

Finally, Tables VII and VIII show the experimentally derived expected value (E) and sample

standard deviation (STD) of the coe�cients c1, �1, c2, and �2 used to describe the complexity of our

algorithm in Section 3. The values in Table VII were obtained by analyzing data collected while

sorting each of the duplicate benchmarks [DD] and [RD] 50 times on a 64-node Cray T3D. For each

trial, the values recorded were the largest occurrence of each coe�cient at any of the 64 processors.

By contrast, the values in Table VIII were obtained by analyzing data collected while sorting each

of the unique benchmarks [G], [B], [2-G], [4-G], and [S] 20 times. In every trial, a di�erent seed

was used for the random number generator, both to generate the benchmark where appropriate and

to distribute the keys into bins as part of Step (1). The experimentally derived expected values in

Table VII for c1, �1, c2, and �2 agree strongly with the theoretically derived bounds for duplicate

keys of c1 � 2, �1 � c1, c2 � 5:24, and �2 � 2:62 for p2 � n
3 lnn . Similarly, the experimentally derived

expected values in Table VIII for c1, �1, c2, and �2 agree strongly with the theoretically derived

bounds for unique keys of c1 � 2, �1 � c1, c2 � 3:10, and �2 � 1:77 for p2 � n
3 lnn . Note that expected

values for c2 and �2 are actually less for duplicate values than for unique values, which is the opposite

of what we might expect from the computed bounds. This might simply reect our limited choice of
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Figure 2: Scalability of sorting integers and doubles with respect to the problem size, for di�ering numbers
of processors.
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Figure 3: Distribution of execution time amongst the eight steps of sample sort. Times are obtained for
both a 64 node T3D and a 64 node SP-2-WN using both the integer and the double versions of the [U]
benchmark.
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keys/proc E(c1) STD(c1) E(�1) STD(�1) E(c2) STD(c2) E(�2) STD(�2)

4K 2.02 0.104 1.08 0.019 2.12 0.336 1.45 0.183

16K 1.48 0.044 1.04 0.008 1.49 0.133 1.18 0.089

64K 1.23 0.019 1.02 0.0003 1.24 0.062 1.09 0.044

256K 1.11 0.009 1.01 0.002 1.12 0.026 1.04 0.020

1M 1.06 0.005 1.00 0.001 1.06 0.015 1.02 0.012

Table VII: Statistical evaluation of the experimentally observed values of the algorithm coe�cients on a
64 node T3D using the duplicate benchmarks.

keys/proc E(c1) STD(c1) E(�1) STD(�1) E(c2) STD(c2) E(�2) STD(�2)

4K 2.02 0.091 1.08 0.017 2.64 0.935 1.55 0.181

16K 1.48 0.044 1.04 0.007 1.65 0.236 1.25 0.074

64K 1.23 0.021 1.02 0.0003 1.30 0.087 1.12 0.034

256K 1.11 0.010 1.01 0.002 1.14 0.034 1.06 0.019

1M 1.06 0.005 1.00 0.001 1.07 0.013 1.03 0.0108

Table VIII: Statistical evaluation of the experimentally observed values of the algorithm coe�cients on a
64 node T3D using the unique benchmarks.

benchmarks, or it may suggest that the bounds computed for duplicate are looser than those computed

for unique values.

4.3 Comparison with Previous Results

Despite the enormous theoretical interest in parallel sorting, we were able to locate relatively few

empirical studies. Of these, only a few were done on machines which either were available to us for

comparison or involved code which could be ported to these machines for comparison. In Tables

IX and X, we compare the performance of our sample sort algorithm with two other sample sort

algorithms. In all cases, the code was written in Split-C. In the case of Alexandrov et al. [1], the

times were determined by us directly on a 32 node CM-5 using code supplied by the authors which

had been optimized for a Meiko CS-2. In the case of Dusseau [17], the times were obtained from the

graphed results reported for a 64 node CM-5.

Finally, there are the results for the NAS Parallel Benchmark [30] for Integer Sorting (IS). The

name of this benchmark is somewhat misleading. Instead of requiring that the integers be placed in

sorted order as we do, the benchmark only requires that they be ranked without any reordering, which

is a signi�cantly simpler task. Speci�cally, the Class A Benchmark requires ten repeated rankings of a

Gaussian distributed random input consisting of 223 integers ranging in value from 0 to
�
219 � 1

�
. The

Class B Benchmark is similar, except that the input consists of 225 integers ranging in value from 0

to
�
221 � 1

�
. Table XI compares our results on these two variations of the NAS Benchmark with the

best reported times for the CM-5, the T3D, and the SP-2-WN. We believe that our results, which were
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[U] [G] [2-G] [B] [S]
int./proc. HBJ AIS HBJ AIS HBJ AIS HBJ AIS HBJ AIS

4K 0.049 0.153 0.050 0.152 0.051 1.05 0.055 0.181 0.049 y

8K 0.090 0.197 0.090 0.192 0.092 1.09 0.094 0.193 0.087 y

16K 0.172 0.282 0.171 0.281 0.173 1.16 0.173 0.227 0.175 y

32K 0.332 0.450 0.330 0.449 0.335 1.34 0.335 0.445 0.338 y

64K 0.679 0.833 0.679 0.835 0.683 1.76 0.685 0.823 0.686 y

128K 1.65 2.02 1.64 2.02 1.64 2.83 1.64 1.99 1.64 y

256K 3.72 4.69 3.71 4.59 3.71 5.13 3.70 4.56 3.71 y

512K 7.97 10.0 7.85 9.91 7.93 9.58 7.95 9.98 7.95 y

Table IX: Total execution time (in seconds) required to sort a variety of benchmarks and problem sizes,
comparing our version of sample sort (HBJ) with that of Alexandrov et al. (AIS) on a 32-node CM-5.
yWe were unable to run the (AIS) code on this input.

[U] [B] [Z]

int./proc. HBJ DUS HBJ DUS HBJ DUS

1M 16.6 21 12.2 91 10.6 11

Table X: Time required per element (in microseconds) to sample sort 64M integers, comparing our results
(HBJ) with those obtained from the graphed results reported by Dusseau (DUS) on a 64 node CM-5.

obtained using high-level, portable code, compare favorably with the other reported times, which were

obtained by the vendors using machine-speci�c implementations and perhaps system modi�cations.

The only performance studies we are aware of on similar platforms for generalized sorting are those

of Tridgell and Brent [32], who report the performance of their algorithm using a 32 node CM-5 on a

uniformly distributed random input of signed integers, as described in Table XII.

5 Conclusion

In this paper, we introduced a novel variation on sample sort and conducted an experimental study

of its performance on a number of platforms using widely di�erent benchmarks. Our results illustrate

the e�ciency and scalability of our algorithm across the di�erent platforms and appear to improve on

all similar results known to the authors. Our results also compare favorably with those reported for

the simpler ranking problem posed by the NAS Integer Sorting (IS) Benchmark.

We have also studied several variations on our algorithm which use di�ering strategies to ensure

that every bucket in Step (1) receives an equal number of elements. The results obtained for these

variations were very similar to those reported in this paper. On no platform did the improvements

exceed approximately 5%, and in many instances they actually ran more slowly. We believe that a

signi�cant improvement of our algorithm would require the enhancement of the sequential sorting and

merging in Steps (3) and (8), and that there is little room for signi�cant improvement in either the
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Comparison of NAS (IS) Benchmark Times

Class A Class B
Number Best Our Best Our

Machine of Processors Reported Time Time Reported Time Time

CM-5 32 43.1 29.8 NA 124
64 24.2 13.7 NA 66.4
128 12.0 7.03 NA 33.0

T3D 16 7.07 12.3 NA 60.1
32 3.89 6.82 16.57 29.3
64 2.09 3.76 8.74 16.2
128 1.05 2.12 4.56 8.85

SP-2-WN 16 2.65 10.3 10.60 46.6
32 1.54 5.97 5.92 25.5
64 0.89 3.68 3.41 13.6
128 0.59 2.52 1.98 8.45

Table XI: Comparison of our execution time (in seconds) with the best reported times for the Class A and
Class B NAS Parallel Benchmark for integer sorting. Note that while we actually place the integers in
sorted order, the benchmark only requires that they be ranked without actually reordering.

Problem [U]
Size HBJ TB

8M 4.57 5.48

Table XII: Total execution time (in seconds) required to sort 8M signed integers, comparing our results
(HBJ) with those of Tridgell and Brent (TB) on a 32 node CM-5.

load balance or the communication e�ciency.
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