6,244 research outputs found

    Electronic structure of copper intercalated transition metal dichalcogenides: First-principles calculations

    Full text link
    We report first principles calculations, within density functional theory, of copper intercalated titanium diselenides, CuxTiSe2, for values of x ranging from 0 to 0.11. The effect of intercalation on the energy bands and densities of states of the host material is studied in order to better understand the cause of the superconductivity that was recently observed in these structures. We find that charge transfer from the copper atoms to the metal dichalcogenide host layers causes a gradual reduction in the number of holes in the otherwise semi-metallic pristine TiSe2, thus suppressing the charge density wave transition at low temperatures, and a corresponding increase in the density of states at the Fermi level. These effects are probably what drive the superconducting transition in the intercalated systems.Comment: 8 pages, 6 figure

    Topology of the Spin-polarized Charge Density in bcc and fcc Iron

    Full text link
    We investigate the topology of the spin-polarized charge density in bcc and fcc iron. While the total spin-density is found to possess the topology of the non-magnetic prototypical structures, in some cases the spin-polarized densities are characterized by unique topologies; for example, the spin-polarized charge densities of bcc and high-spin fcc iron are atypical of any known for non-magnetic materials. In these cases, the two spin-densities are correlated: the spin-minority electrons have directional bond paths with deep minima in the minority density, while the spin-majority electrons fill these holes, reducing bond directionality. The presence of two distinct spin topologies suggests that a well-known magnetic phase transition in iron can be fruitfully reexamined in light of these topological changes. We show that the two phase changes seen in fcc iron (paramagnetic to low-spin and low-spin to high-spin) are different. The former follows the Landau symmetry-breaking paradigm and proceeds without a topological transformation, while the latter also involves a topological catastrophe.Comment: 5 pages, 3 figures. Phys. Rev. Lett. (in press

    Window-based Streaming Graph Partitioning Algorithm

    Full text link
    In the recent years, the scale of graph datasets has increased to such a degree that a single machine is not capable of efficiently processing large graphs. Thereby, efficient graph partitioning is necessary for those large graph applications. Traditional graph partitioning generally loads the whole graph data into the memory before performing partitioning; this is not only a time consuming task but it also creates memory bottlenecks. These issues of memory limitation and enormous time complexity can be resolved using stream-based graph partitioning. A streaming graph partitioning algorithm reads vertices once and assigns that vertex to a partition accordingly. This is also called an one-pass algorithm. This paper proposes an efficient window-based streaming graph partitioning algorithm called WStream. The WStream algorithm is an edge-cut partitioning algorithm, which distributes a vertex among the partitions. Our results suggest that the WStream algorithm is able to partition large graph data efficiently while keeping the load balanced across different partitions, and communication to a minimum. Evaluation results with real workloads also prove the effectiveness of our proposed algorithm, and it achieves a significant reduction in load imbalance and edge-cut with different ranges of dataset

    18O isotope effect in the photosynthetic water splitting process

    Get PDF
    AbstractIn mass spectroscopic experiments of oxygen evolution in Photosystem II at 50% enrichment of H218O, one expects equal signals of 18O2 and 16O2 unless one of the isotopes is favored by the oxygen evolving complex (OEC). We have observed a deviation from this expectation, being a clear indication of an isotope effect. We have measured the effect to be 1.14–1.30, which is higher than the theoretically predicted value of 1.014–1.06. This together with the strong temperature variation of the measured effect with a discontinuity at 11 °C observed for wild-type tobacco and at 9 °C for a yellow-green tobacco mutant suggest that an additional mechanism is responsible for the observed high isotope effect. The entry of a finite size of water clusters to the cleavage site of the OEC can explain the observation

    Copper flows in buildings, infrastructure and mobiles: a dynamic model and its application to Switzerland

    Get PDF
    During the last century, the consumption of materials for human needs increased by several orders of magnitude, even for non-renewable materials such as metals. Some data on annual consumption (input) and recycling/waste (output) can often be found in the federal statistics, but a clear picture of the main flows is missing. A dynamic material flow model is developed for the example of copper in Switzerland in order to simulate the relevant copper flows and stocks over the last 150years. The model is calibrated using data from statistical and published sources as well as from interviews and measurements. A simulation of the current state (2000) is compared with data from other studies. The results show that Swiss consumption and losses are both high, at a level of about 8 and 2kg/(capyear), respectively, or about three times higher than the world average. The model gives an understanding of the flows and stocks and their interdependencies as a function of time. This is crucial for materials whose consumption dynamics are characterised by long lifetimes and hence for relating the current output to the input of the whole past. The model allows a comprehensive discussion of possible measures to reduce resource use and losses to the environment. While increasing the recycling reduces losses to landfill, only copper substitution can reduce the different losses to the environment, although with a time delay of the order of a lifetim

    Further Characterization of Dopamine Release by Permeabilized PC 12 Cells

    Get PDF
    Rat pheochromocytoma cells (PC 12) permeabilized with staphylococcal α-toxin release [3H]dopamine after addition of micromolar Ca2+. This does not require additional Mg2+-ATP (in contrast to bovine adrenal medullary chromaffin cells). We also observed Ca2+-dependent [3H]-dopamine release from digitonin-permeabilized PC 12 cells. Permeabilization with α-toxin or digitonin and stimulation of the cells were done consecutively to wash out endogenous Mg2+-ATP. During permeabilization, ATP was removed effectively from the cytoplasm by both agents but the cells released [3H]dopamine in response to micromolar Ca2+ alone. Replacement by chloride of glutamate, which could sustain mitochondrial ATP production in permeabilized cells, does not significantly alter catecholamine release induced by Ca2+. However, Mg2+ without ATP augments the Ca2+-induced release. The release was unaltered by thiol-, hydroxyl-, or calmodulin-interfering substances. Thus Mg2+-ATP, calmodulin, or proteins containing -SH or -OH groups are not necessary for exocytosis in permeabilized PC 12 cells

    FIP EquityRx Collection: Inclusion for all, equity for all

    Get PDF

    Kinetic Energy Density Study of Some Representative Semilocal Kinetic Energy Functionals

    Full text link
    There is a number of explicit kinetic energy density functionals for non-interacting electron systems that are obtained in terms of the electron density and its derivatives. These semilocal functionals have been widely used in the literature. In this work we present a comparative study of the kinetic energy density of these semilocal functionals, stressing the importance of the local behavior to assess the quality of the functionals. We propose a quality factor that measures the local differences between the usual orbital-based kinetic energy density distributions and the approximated ones, allowing to ensure if the good results obtained for the total kinetic energies with these semilocal functionals are due to their correct local performance or to error cancellations. We have also included contributions coming from the laplacian of the electron density to work with an infinite set of kinetic energy densities. For all the functionals but one we have found that their success in the evaluation of the total kinetic energy are due to global error cancellations, whereas the local behavior of their kinetic energy density becomes worse than that corresponding to the Thomas-Fermi functional.Comment: 12 pages, 3 figure

    Diffuse postoperative peritonitis -value of diagnostic parameters and impact of early indication for relaparotomy

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>Current criteria for performing relaparotomy for suspected peritonitis are non explicit and based on non-quantitative, subjective arguments or hospital practice. The aim of this study was to determine the value of routinely used clinical and diagnostic parameters in early detection of postoperative, diffuse peritonitis (PP). Furthermore, the prognosis and outcome after early indication for relaparotomy in patients with PP compared to community-aquired peritonitis (CAP) was evaluated.</p> <p>Methods</p> <p>Between 1999 and 2008, a total of 251 patients with diffuse secondary peritonitis either postoperative (PP) or community acquired (CAP) were analyzed retrospectively. PP (n = 114) and CAP (n = 137) were compared regarding physical examination, MPI-Score, APACHE II-Score, evidence of organ failure, laboratory parameters, diagnostic instruments and clinical course. The treatment regimen comprised surgical source control (with/without programmed lavage), abdominal closure and relaparotomy on demand, broad spectrum antibiotic therapy and intensive care support.</p> <p>Results</p> <p>The APACHE II-Score (20 CAP vs. 22 PP, p = 0.012), MPI-Score (27 CAP vs. 30 PP, p = 0.001) and the number of lavages differed significantly. Positive phyiscal testing and signs of sepsis [abdominal pain (81.6% PP vs. CAP 97.1%, p = 0.03), rebound tenderness (21.9% vs. 35.8%, p = 0.02), fever (35.1% vs. 51.8%, p = 0.03)] occurred significantly less often in the PP patients than in the CAP group. Conventional radiography (66.2%) and ultrasonography (44.3%) had a lower diagnostic sensitivity than did abdominal CT-scan (97.2%). Mortality was higher in the PP group but did not differ significantly between the two groups (47.4% PP vs. 35.8% CAP, p = 0.06).</p> <p>Conclusion</p> <p>The value of physical tests and laboratory parameters in diagnosing abdominal sepsis is limited. CT-scanning revealed the highest diagnostic accuracy. A treatment regimen of early relaprotomy appears to be the most reasonable strategy for as early discovery of postoperative peritonitis as possible.</p

    Phonon Mode Spectroscopy, Electron-Phonon Coupling and the Metal-Insulator Transition in Quasi-One-Dimensional M2Mo6Se6

    Full text link
    We present electronic structure calculations, electrical resistivity data and the first specific heat measurements in the normal and superconducting states of quasi-one-dimensional M2Mo6Se6 (M = Tl, In, Rb). Rb2Mo6Se6 undergoes a metal-insulator transition at ~170K: electronic structure calculations indicate that this is likely to be driven by the formation of a dynamical charge density wave. However, Tl2Mo6Se6 and In2Mo6Se6 remain metallic down to low temperature, with superconducting transitions at Tc = 4.2K and 2.85K respectively. The absence of any metal-insulator transition in these materials is due to a larger in-plane bandwidth, leading to increased inter-chain hopping which suppresses the density wave instability. Electronic heat capacity data for the superconducting compounds reveal an exceptionally low density of states DEF = 0.055 states eV^-1 atom^-1, with BCS fits showing 2Delta/kBTc >= 5 for Tl2Mo6Se6 and 3.5 for In2Mo6Se6. Modelling the lattice specific heat with a set of Einstein modes, we obtain the approximate phonon density of states F(w). Deconvolving the resistivity for the two superconductors then yields their electron-phonon transport coupling function a^2F(w). In Tl2Mo6Se6 and In2Mo6Se6, F(w) is dominated by an optical "guest ion" mode at ~5meV and a set of acoustic modes from ~10-30meV. Rb2Mo6Se6 exhibits a similar spectrum; however, the optical phonon has a lower intensity and is shifted to ~8meV. Electrons in Tl2Mo6Se6 couple strongly to both sets of modes, whereas In2Mo6Se6 only displays significant coupling in the 10-18meV range. Although pairing is clearly not mediated by the guest ion phonon, we believe it has a beneficial effect on superconductivity in Tl2Mo6Se6, given its extraordinarily large coupling strength and higher Tc compared to In2Mo6Se6.Comment: 16 pages, 13 figure
    • …
    corecore