1,309 research outputs found
Computed Tomographic Features of the Camel Nasal Myiasis
The purpose of this work was to describe the computed tomographic (CT) features of nasal myiasis in camel (Camelus dromedarius), which caused by the larvae of camel nasal botfly Cephalopina titillator. Twenty infested heads of emergency slaughtered camels and five normal heads were obtained for the study. The normal anatomical features of the nasal cavity in CT images were identical to their cross sections without any pathological changes. The most commonly encountered CT findings in the infested group were (1) unilateral-rounded foci of soft tissue or fluid opacity in the ventral nasal concha in 100 % of cases, the foci also found bilaterally in the ethmoidal labyrinth 20% and frontal sinuses 5%. (2) Kidney-shaped hypolucent foci were found unilaterally in the ventral bulla 20% (3) Specific pattern of lesions distribution, which tend to be localized in three levels, the caudal two thirds of the ventral nasal concha, the ethmoidal labyrinth and the frontal sinus. It was concluded that, CT may be useful in detecting intranasal pathological changes associated with Cephalopina larval infestation in camel
On Construction of Tri-Concept Lattices
The main point is to define the structure of a Tri-Concept lattice to deal with data given by different sources and represent it by less complex structures without loosing knowledge. We suggest the algorithm TRI-NEST to form the nested diagrams corresponding to the Tri-Concept lattices. Adding the ICE-T algorithm enables us to generate all frequently closed concepts, which leads to simplifying the Tri-Concept lattices and using the Iceberg Concept lattices as a reduction method to the big data while preserving all information
Kinetics of the electropolymerization of aminoanthraquinone from aqueous solutions and analytical applications of the polymer film
AbstractPoly 1-amino-9, 10-anthraquinone (PAAQ) films were prepared by the electropolymerization of 1-amino-9,10-anthraquinone (AAQ) on platinum substrate from aqueous media, where 5.0×10−3molL−1 AAQ and 6.0molL−1 H2SO4 were used. The kinetics of the electropolymerization process was investigated by determining the change of the charge consumed during the polymerization process with time at different concentrations of both monomer and electrolyte. The results have shown that the process follows first order kinetics with respect to the monomer concentration. The order of the reaction with respect to the aqueous solvent i.e. H2SO4 was found to be negative. The polymer films were successfully used as sensors for the electroanalytical determination of many hazardous compounds, e.g. phenols, and biologically important materials like dopamine. The electroanalytical determination was based on the measurements of the oxidation current peak of the material in the cyclic voltammetric measurements. The cyclic voltammograms were recorded at a scan rate of 100mVs−1 and different analyte concentrations. A calibration curve was constructed for each analyte, from which the determination of low concentrations of catechol and hydroquinone (HQ) as examples of hazardous compounds present in waste water and also for ascorbic acid and dopamine as examples of valuable biological materials can be achieved
Spin transport in ferromagnet-InSb nanowire quantum devices
Signatures of Majorana zero modes (MZMs), which are the building blocks for
fault-tolerant topological quantum computing, have been observed in
semiconductor nanowires (NW) with strong spin-orbital-interaction (SOI), such
as InSb and InAs NWs with proximity-induced superconductivity. Realizing
topological superconductivity and MZMs in this most widely-studied platform
also requires eliminating spin degeneracy, which is realized by applying a
magnetic field to induce a helical gap. However, the applied field can
adversely impact the induced superconducting state in the NWs and also places
geometric restrictions on the device, which can affect scaling of future
MZM-based quantum registers. These challenges could be circumvented by
integrating magnetic elements with the NWs. With this motivation, in this work
we report the first experimental investigation of spin transport across InSb
NWs, which are enabled by devices with ferromagnetic (FM) contacts. We observe
signatures of spin polarization and spin-dependent transport in the
quasi-one-dimensional ballistic regime. Moreover, we show that electrostatic
gating tunes the observed magnetic signal and also reveals a transport regime
where the device acts as a spin filter. These results open an avenue towards
developing MZM devices in which spin degeneracy is lifted locally, without the
need of an applied magnetic field. They also provide a path for realizing
spin-based devices that leverage spin-orbital states in quantum wires.Comment: 30 pages, 12 figure
Ultrastructural and Molecular Changes in the Developing Small Intestine of the Toad Bufo regularis
The ontogenetic development of the small intestine of the toad Bufo regularis was investigated using twofold approaches, namely, ultrastructural and molecular. The former has been done using transmission electron microscope and utilizing the developmental stages 42, 50, 55, 60, 63, and 66. The most prominent ultrastructural changes were recorded at stage 60 and were more evident at stage 63. These included the appearance of apoptotic bodies/nuclei within the larval epithelium, the presence of macrophages, swollen mitochondria, distorted rough endoplasmic reticulum, chromatin condensation, and irregular nuclear envelop, and the presence of large vacuoles and lysosomes. The molecular investigation involved examining DNA content and fragmentation. The results showed that the DNA content decreased significantly during the metamorphic stages 60 and 63 compared with both larval (50 and 55) and postmetamorphic (66) stages. The metamorphic stages (60 and 63) displayed extensive DNA laddering compared with stages 50, 55, and 66. The percentage of DNA damage was 0.00%, 12.91%, 57.26%, 45.48%, and 4.43% for the developmental stages 50, 55, 60, 63, and 66, respectively. In conclusion, the recorded remodeling of the small intestine represents a model for clarifying the mechanism whereby cell death and proliferation are controlled
Genesis and soil environmental implications of intact in-situ rhizoliths in dunes of the Badain Jaran Desert, northwestern China
Desert rhizoliths are generally found as weathered, broken and scattered samples on dune field surface, but rarely in-situ in their initial states buried under the soil of desert in the Badain Jaran Desert, northwest China. This study offers an assessment of the morphological, mineralogical, and chemical properties of intact and in-situ rhizoliths found in soils of swales and depressions among dune chains. The characteristics of these rare and precious objects were assessed using optical polarizing microscopy, cathodoluminescence, scanning electronic microscopy, radiocarbon dating, and stable isotopic analyses, providing the opportunity for discussion of the rhizolith formation mechanisms and associated environmental conditions. Field and laboratory investigations showed that the in-situ intact rhizoliths were formed only in the places where Artemisia shrubs are living, and the remaining root relicts within rhizoliths belong to this species. The spatial distribution of rhizoliths also suggested that low topographic positions on a landscape provided soil moisture, and redox environments favored rhizolith formation. A semi-closed redox environment in the subsoil at swales and depressions, where water is always present, along with the sandy soil texture, facilitated fast water percolation to deeper depths and condensation. Such a soil environment not only provides water for Artemisia growth, but also for the weathering of minerals such as felspars and calcite from primary carbonates, and for the decomposition of root relicts. Furthermore, harsh climatic conditions, such as strong winds and solar radiation, led to water evaporation through dead root channels and triggered the calcification along the root relicts. The entrapped lithogenic carbonates and to a lesser extent the decomposition of Artemisia roots provided the carbon sources for the rhizoliths formation, while the weathering of soil minerals, particularly feldspars and carbonates, was the main source of Ca. Rhizoliths in the Badain Jaran desert formed relatively quickly, probably over a few soil drying episodes. This led to the entrapment of a large quantity of lithogenic carbonates (more than 90% of carbon) within rhizolith cement. The re-dissolution of the entrapped lithogenic carbonates in rhizolith tubes should be taken into account in the paleoenvironmental interpretation of 14C ages, the latter suggesting that rhizoliths formed during the Holocene (~ 2053 years cal BP, based on root organic relicts). © 2022, The Author(s)
Genesis and soil environmental implications of intact in-situ rhizoliths in dunes of the Badain Jaran Desert, northwestern China
Desert rhizoliths are generally found as weathered, broken and scattered samples on dune field surface, but rarely in-situ in their initial states buried under the soil of desert in the Badain Jaran Desert, northwest China. This study offers an assessment of the morphological, mineralogical, and chemical properties of intact and in-situ rhizoliths found in soils of swales and depressions among dune chains. The characteristics of these rare and precious objects were assessed using optical polarizing microscopy, cathodoluminescence, scanning electronic microscopy, radiocarbon dating, and stable isotopic analyses, providing the opportunity for discussion of the rhizolith formation mechanisms and associated environmental conditions. Field and laboratory investigations showed that the in-situ intact rhizoliths were formed only in the places where Artemisia shrubs are living, and the remaining root relicts within rhizoliths belong to this species. The spatial distribution of rhizoliths also suggested that low topographic positions on a landscape provided soil moisture, and redox environments favored rhizolith formation. A semi-closed redox environment in the subsoil at swales and depressions, where water is always present, along with the sandy soil texture, facilitated fast water percolation to deeper depths and condensation. Such a soil environment not only provides water for Artemisia growth, but also for the weathering of minerals such as felspars and calcite from primary carbonates, and for the decomposition of root relicts. Furthermore, harsh climatic conditions, such as strong winds and solar radiation, led to water evaporation through dead root channels and triggered the calcification along the root relicts. The entrapped lithogenic carbonates and to a lesser extent the decomposition of Artemisia roots provided the carbon sources for the rhizoliths formation, while the weathering of soil minerals, particularly feldspars and carbonates, was the main source of Ca. Rhizoliths in the Badain Jaran desert formed relatively quickly, probably over a few soil drying episodes. This led to the entrapment of a large quantity of lithogenic carbonates (more than 90% of carbon) within rhizolith cement. The re-dissolution of the entrapped lithogenic carbonates in rhizolith tubes should be taken into account in the paleoenvironmental interpretation of 14C ages, the latter suggesting that rhizoliths formed during the Holocene (~ 2053 years cal BP, based on root organic relicts)
Autonomous three-dimensional formation flight for a swarm of unmanned aerial vehicles
This paper investigates the development of a new guidance algorithm for a formation of unmanned aerial vehicles. Using the new approach of bifurcating potential fields, it is shown that a formation of unmanned aerial vehicles can be successfully controlled such that verifiable autonomous patterns are achieved, with a simple parameter switch allowing for transitions between patterns. The key contribution that this paper presents is in the development of a new bounded bifurcating potential field that avoids saturating the vehicle actuators, which is essential for real or safety-critical applications. To demonstrate this, a guidance and control method is developed, based on a six-degreeof-freedom linearized aircraft model, showing that, in simulation, three-dimensional formation flight for a swarm of unmanned aerial vehicles can be achieved
Multichannel blind deconvolution using a generalized Gaussian source model
In this paper, we present an algorithm for the problem of multi-channel blind deconvolution which can adapt to un-known sources with both sub-Gaussian and super-Gaussian probability density distributions using a generalized gaussian source model. We use a state space representation to model the mixer and demixer respectively, and show how the parameters of the demixer can be adapted using a gradient descent algorithm incorporating the natural gradient extension. We also present a learning method for the unknown parameters of the generalized Gaussian source model. The performance of the proposed generalized Gaussian source model on a typical example is compared with those of other algorithm, viz the switching nonlinearity algorithm proposed by Lee et al. [8]. © Association for Scientific Research
- …