9 research outputs found

    A Single Dose of Atorvastatin Applied Acutely after Spinal Cord Injury Suppresses Inflammation, Apoptosis, and Promotes Axon Outgrowth, Which Might Be Essential for Favorable Functional Outcome.

    Get PDF
    The aim of our study was to limit the inflammatory response after a spinal cord injury (SCI) using Atorvastatin (ATR), a potent inhibitor of cholesterol biosynthesis. Adult Wistar rats were divided into five experimental groups: one control group, two Th9 compression (40 g/15 min) groups, and two Th9 compression + ATR (5 mg/kg, i.p.) groups. The animals survived one day and six weeks. ATR applied in a single dose immediately post-SCI strongly reduced IL-1β release at 4 and 24 h and considerably reduced the activation of resident cells at one day post-injury. Acute ATR treatment effectively prevented the excessive infiltration of destructive M1 macrophages cranially, at the lesion site, and caudally (by 66%, 62%, and 52%, respectively) one day post-injury, whereas the infiltration of beneficial M2 macrophages was less affected (by 27%, 41%, and 16%). In addition, at the same time point, ATR visibly decreased caspase-3 cleavage in neurons, astrocytes, and oligodendrocytes. Six weeks post-SCI, ATR increased the expression of neurofilaments in the dorsolateral columns and Gap43-positive fibers in the lateral columns around the epicenter, and from day 30 to 42, significantly improved the motor activity of the hindlimbs. We suggest that early modulation of the inflammatory response via effects on the M1/M2 macrophages and the inhibition of caspase-3 expression could be crucial for the functional outcome

    Epidural oscillating field stimulation increases axonal regenerative capacity and myelination after spinal cord trauma

    No full text
    Oscillating field stimulation (OFS) with regular alterations in the polarity of electric current is a unique, experimental approach to stimulate, support, and potentially guide the outgrowth of both sensory and motor nerve fibers after spinal cord injury (SCI). In previous experiments, we demonstrated the beneficial effects of OFS in a 4-week survival period after SCI. In this study, we observed the major behavioral, morphological, and protein changes in rats after 15 minutes of T9 spinal compression with a 40 g force, followed by long-lasting OFS (50 µA), over a 8-week survival period. Three groups of rats were analyzed: rats after T9 spinal compression (SCI group); SCI rats subjected to implantation of active oscillating field stimulator (OFS + SCI group); and SCI rats subjected to nonfunctional OFS (nOFS + SCI group). Histopathological analysis of spinal tissue indicated a strong impact of epidural OFS on the reduction of tissue and myelin loss after SCI in the segments adjacent to the lesion site. Quantitative fluorescent analysis of the most affected areas of spinal cord tissue revealed a higher number of spared axons and oligodendrocytes of rats in the OFS + SCI group, compared with rats in the SCI and nOFS + SCI groups. The protein levels of neurofilaments (NF-l), growth-associated protein-43 (marker for newly sprouted axons), and myelin basic protein in rats were signifiantly increased in the OFS + SCI group than in the nOFS + SCI and SCI groups. This suggests a supporting role of the OFS in axonal and myelin regeneration after SCI. Moreover, rats in the OFS + SCI group showed great improvements in sensory and motor functions than did rats in the nOFS + SCI and SCI groups. All these findings suggest that long-lasting OFS applied immediately after SCI can provide a good microenviroment for recovery of damaged spinal tissue by triggering regenreative processes in the acute phase of injury

    e-Intervention to boost trainee teachers' peer assessment.

    Get PDF
    This poster presents a summary of an on-going action research that was inspired by our desire to determine the impact of formative assessment strategies embedded in the teacher education programme. We are revising the way our trainees see the strategies used in their course that aim to enhance their peer assessment skills, self-assessment and reflective practice; how they believe these strategies improve their learning and whether the trainee teachers are able to apply these strategies in their teaching practice. The initial outcome has indicated the needs of using multimedia and developing an eTool that will support initial teacher educators in the analysis and reflection upon essential teaching skills required to deliver a 15 minute micro-teach session. In addition, we have taken the opportunity to develop a collaborative project with the University of Presov (Slovakia) to explore good/best practices in self-assessment and peer-assessment using technology, while we have an ERASMUS fellow researcher supporting the project. The poster meets the Conference theme as it not only involves research students in the project (ERASMUS and a Teacher Educator student final project), but also explores areas for further learning enhancements involving research

    Are Molecules Involved in Neuritogenesis and Axon Guidance Related to Autism Pathogenesis?

    No full text
    Autism spectrum disorder is a heterogeneous disease, and numerous alterations of gene expression come into play to attempt to explain potential molecular and pathophysiological causes. Abnormalities of brain development and connectivity associated with alterations in cytoskeletal rearrangement, neuritogenesis and elongation of axons and dendrites might represent or contribute to the structural basis of autism pathology. Slit/Robo signaling regulates cytoskeletal remodeling related to axonal and dendritic branching. Components of its signaling pathway (ABL and Cdc42) are suspected to be molecular bases of alterations of normal development. The present review describes the most important mechanisms underlying neuritogenesis, axon pathfinding and the role of GTPases in neurite outgrowth, with special emphasis on alterations associated with autism spectrum disorders. On the basis of analysis of publicly available microarray data, potential biomarkers of autism are discussed

    Biological Effects of Hydrogen Water on Subjects with NAFLD: A Randomized, Placebo-Controlled Trial

    No full text
    Non-alcoholic fatty liver disease (NAFLD) is a liver pathology affecting around 25% of the population worldwide. Excess oxidative stress, inflammation and aberrant cellular signaling can lead to this hepatic dysfunction and eventual carcinoma. Molecular hydrogen has been recognized for its selective antioxidant properties and ability to attenuate inflammation and regulate cellular function. We administered hydrogen-rich water (HRW) to 30 subjects with NAFLD in a randomized, double-blinded, placebo-controlled manner for eight weeks. Phenotypically, we observed beneficial trends (p > 0.05) in decreased weight (≈1 kg) and body mass index in the HRW group. HRW was well-tolerated, with no significant changes in liver enzymes and a trend of improved lipid profile and reduced lactate dehydrogenase levels. HRW tended to non-significantly decrease levels of nuclear factor kappa B, heat shock protein 70 and matrix metalloproteinase-9. Interestingly, there was a mild, albeit non-significant, tendency of increased levels of 8-hydroxy-2’-deoxyguanosine and malondialdehyde in the HRW group. This mild increase may be indicative of the hormetic effects of molecular hydrogen that occurred prior to the significant clinical improvements reported in previous longer-term studies. The favorable trends in this study in conjunction with previous animal and clinical findings suggest that HRW may serve as an important adjuvant therapy for promoting and maintaining optimal health and wellness. Longer term studies focused on prevention, maintenance, or treatment of NAFLD and early stages of NASH are warranted
    corecore