42 research outputs found

    Africa RISING data management plan

    Get PDF

    Development of Preclinical Ultrasound Imaging Techniques to Identify and Image Sentinel Lymph Nodes in a Cancerous Animal Model

    Get PDF
    Lymph nodes (LNs) are believed to be the first organs targeted by colorectal cancer cells detached from a primary solid tumor because of their role in draining interstitial fluids. Better detection and assessment of these organs have the potential to help clinicians in stratification and designing optimal design of oncological treatments for each patient. Whilst highly valuable for the detection of primary tumors, CT and MRI remain limited for the characterization of LNs. B-mode ultrasound (US) and contrast-enhanced ultrasound (CEUS) can improve the detection of LNs and could provide critical complementary information to MRI and CT scans; however, the European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB) guidelines advise that further evidence is required before US or CEUS can be recommended for clinical use. Moreover, knowledge of the lymphatic system and LNs is relatively limited, especially in preclinical models. In this pilot study, we have created a mouse model of metastatic cancer and utilized 3D high-frequency ultrasound to assess the volume, shape, and absence of hilum, along with CEUS to assess the flow dynamics of tumor-free and tumor-bearing LNs in vivo. The aforementioned parameters were used to create a scoring system to predict the likelihood of a disease-involved LN before establishing post-mortem diagnosis with histopathology. Preliminary results suggest that a sum score of parameters may provide a more accurate diagnosis than the LN size, the single parameter currently used to predict the involvement of an LN in disease

    Remarkable Challenges of High-Performance Language Virtual Machines

    Get PDF
    Language Virtual Machines (VMs) are pervasive in every laptop, server, and smartphone, as is the case with Java or Javascript. They allow application portability between different platforms and better usage of resources. They are used in critical applications such as stock exchange, banking, insurance, and health [25]. Virtual machines are an important asset in companies because they allow the efficient execution of high-level programming languages. Nowadays, they even attract investments from large non-system companies, e.g., Netflix 1 , Meta 2 , Shopify 3 and Amazon 4. VMs achieve high-performance thanks to aggressive optimization techniques that observe and adapt the execution dynamically, either by doing just-in-time compilation [5] or by adapting the memory management strategies at runtime [90, 91]. For all these reasons Virtual Machines are highly-complex engineering pieces, often handcrafted by experts, that mix state-of-the-art compilation techniques with complex memory management that collaborate with the underlying operating systems and hardware. However, besides some well-known techniques that are published in research venues, most knowledge and technology around virtual machines are highly concentrated in large companies such as Microsoft, Google, and Oracle, making Virtual Machine construction difficult, and experiments difficult to reproduce and replicate. Language VMs present many multidisciplinary scientific challenges that appear at the intersection of fields such as hardware, system software, compiler, and software language engineering. This document aims to give a brief overview of the current challenges the VM community faces. To keep this document short, we selected remarkable challenges in managed execution, managed memory, performance evaluation, software engineering and security

    Contrast enhanced magneto-motive ultrasound in lymph nodes - modelling and pre-clinical imaging using magnetic microbubbles

    Get PDF
    Despite advances in MRI, the detection and characterisation of lymph nodes in rectal cancer remains complex, especially when assessing the response to neo-adjuvant treatment. An alternative approach is functional imaging, previously shown to aid characterization of cancer tissues. We report proof-of-concept of the novel technique Contrast-Enhanced Magneto-Motive Ultrasound (CE-MMUS) to recover information relating to local perfusion and lymphatic drainage, and interrogate tissue mechanical properties through magnetically induced tissue deformations. The feasibility of the proposed application was explored using a combination of pre-clinical ultrasound imaging and finite element analysis. First, contrast enhanced ultrasound imaging on one wild type mouse recorded lymphatic drainage of magnetic microbubbles after bolus injection. Second, preliminary CE-MMUS data were acquired as a proof of concept. Third, the magneto-mechanical interactions of a magnetic microbubble with an elastic solid were simulated using finite element software. Accumulation of magnetic microbubbles in the inguinal lymph node was verified using contrast enhanced ultrasound, with peak enhancement occurring 3.7 s post-injection. Preliminary CE-MMUS indicates the presence of magnetic contrast agent in the lymph node. The finite element analysis explores how the magnetic force is transferred to motion of the solid, which depends on elasticity and bubble radius, indicating an inverse relation with displacement. Combining magnetic microbubbles with MMUS could harness the advantages of both techniques, to provide perfusion information, robust lymph node delineation and characterisation based on mechanical properties. Clinical Relevance— Robust detection and characterisation of lymph nodes could be aided by visualising lymphatic drainage of magnetic microbubbles using contrast enhanced ultrasound imaging and magneto-motion, which is dependent on tissue mechanical properties

    Contrast enhanced magneto-motive ultrasound in lymph nodes - modelling and pre-clinical imaging using magnetic microbubbles

    Get PDF
    Despite advances in MRI, the detection and characterisation of lymph nodes in rectal cancer remains complex, especially when assessing the response to neo-adjuvant treatment. An alternative approach is functional imaging, previously shown to aid characterization of cancer tissues. We report proof-of-concept of the novel technique Contrast-Enhanced Magneto-Motive Ultrasound (CE-MMUS) to recover information relating to local perfusion and lymphatic drainage, and interrogate tissue mechanical properties through magnetically induced tissue deformations. The feasibility of the proposed application was explored using a combination of pre-clinical ultrasound imaging and finite element analysis. First, contrast enhanced ultrasound imaging on one wild type mouse recorded lymphatic drainage of magnetic microbubbles after bolus injection. Second, preliminary CE-MMUS data were acquired as a proof of concept. Third, the magneto-mechanical interactions of a magnetic microbubble with an elastic solid were simulated using finite element software. Accumulation of magnetic microbubbles in the inguinal lymph node was verified using contrast enhanced ultrasound, with peak enhancement occurring 3.7 s post-injection. Preliminary CE-MMUS indicates the presence of magnetic contrast agent in the lymph node. The finite element analysis explores how the magnetic force is transferred to motion of the solid, which depends on elasticity and bubble radius, indicating an inverse relation with displacement. Combining magnetic microbubbles with MMUS could harness the advantages of both techniques, to provide perfusion information, robust lymph node delineation and characterisation based on mechanical properties. Clinical Relevance— Robust detection and characterisation of lymph nodes could be aided by visualising lymphatic drainage of magnetic microbubbles using contrast enhanced ultrasound imaging and magneto-motion, which is dependent on tissue mechanical properties

    Project management monitoring tools

    No full text

    Project mapping, monitoring and data management tools for Africa RISING

    No full text
    corecore