41 research outputs found

    Cosmological parameters from SDSS and WMAP

    Full text link
    We measure cosmological parameters using the three-dimensional power spectrum P(k) from over 200,000 galaxies in the Sloan Digital Sky Survey (SDSS) in combination with WMAP and other data. Our results are consistent with a ``vanilla'' flat adiabatic Lambda-CDM model without tilt (n=1), running tilt, tensor modes or massive neutrinos. Adding SDSS information more than halves the WMAP-only error bars on some parameters, tightening 1 sigma constraints on the Hubble parameter from h~0.74+0.18-0.07 to h~0.70+0.04-0.03, on the matter density from Omega_m~0.25+/-0.10 to Omega_m~0.30+/-0.04 (1 sigma) and on neutrino masses from <11 eV to <0.6 eV (95%). SDSS helps even more when dropping prior assumptions about curvature, neutrinos, tensor modes and the equation of state. Our results are in substantial agreement with the joint analysis of WMAP and the 2dF Galaxy Redshift Survey, which is an impressive consistency check with independent redshift survey data and analysis techniques. In this paper, we place particular emphasis on clarifying the physical origin of the constraints, i.e., what we do and do not know when using different data sets and prior assumptions. For instance, dropping the assumption that space is perfectly flat, the WMAP-only constraint on the measured age of the Universe tightens from t0~16.3+2.3-1.8 Gyr to t0~14.1+1.0-0.9 Gyr by adding SDSS and SN Ia data. Including tensors, running tilt, neutrino mass and equation of state in the list of free parameters, many constraints are still quite weak, but future cosmological measurements from SDSS and other sources should allow these to be substantially tightened.Comment: Minor revisions to match accepted PRD version. SDSS data and ppt figures available at http://www.hep.upenn.edu/~max/sdsspars.htm

    Theory of Quantum Optical Control of Single Spin in a Quantum Dot

    Full text link
    We present a theory of quantum optical control of an electron spin in a single semiconductor quantum dot via spin-flip Raman transitions. We show how an arbitrary spin rotation may be achieved by virtual excitation of discrete or continuum trion states. The basic physics issues of the appropriate adiabatic optical pulses in a static magnetic field to perform the single qubit operation are addressed

    Separating the Early Universe from the Late Universe: cosmological parameter estimation beyond the black box

    Full text link
    We present a method for measuring the cosmic matter budget without assumptions about speculative Early Universe physics, and for measuring the primordial power spectrum P*(k) non-parametrically, either by combining CMB and LSS information or by using CMB polarization. Our method complements currently fashionable ``black box'' cosmological parameter analysis, constraining cosmological models in a more physically intuitive fashion by mapping measurements of CMB, weak lensing and cluster abundance into k-space, where they can be directly compared with each other and with galaxy and Lyman alpha forest clustering. Including the new CBI results, we find that CMB measurements of P(k) overlap with those from 2dF galaxy clustering by over an order of magnitude in scale, and even overlap with weak lensing measurements. We describe how our approach can be used to raise the ambition level beyond cosmological parameter fitting as data improves, testing rather than assuming the underlying physics.Comment: Replaced to match accepted PRD version. Refs added. Combined CMB data and window functions at http://www.hep.upenn.edu/~max/pwindows.html or from [email protected]. 18 figs, 19 journal page

    Efficient Inference of Static Types for Java Bytecode

    No full text
    corecore