6,193 research outputs found

    Coherence-Preserving Quantum Bits

    Full text link
    Real quantum systems couple to their environment and lose their intrinsic quantum nature through the process known as decoherence. Here we present a method for minimizing decoherence by making it energetically unfavorable. We present a Hamiltonian made up solely of two-body interactions between four two-level systems (qubits) which has a two-fold degenerate ground state. This degenerate ground state has the property that any decoherence process acting on an individual physical qubit must supply energy from the bath to the system. Quantum information can be encoded into the degeneracy of the ground state and such coherence-preserving qubits will then be robust to local decoherence at low bath temperatures. We show how this quantum information can be universally manipulated and indicate how this approach may be applied to a quantum dot quantum computer.Comment: 5 pages, 1 figur

    Arkansas Wheat Cultivar Performance Tests 2010-2011

    Get PDF
    Wheat cultivar performance tests are conducted each year in Arkansas by the Arkansas Agricultural Experiment Station, Department of Crop, Soil and Environmental Sciences. The tests provide information to companies developing cultivars and/or marketing seed within the state and aid the Arkansas Cooperative Extension Service in formulating cultivar recommendations for small-grain producers

    3D Spectroscopic Observations of Star-Forming Dwarf Galaxies

    Full text link
    We give an introduction into the observational technique of integral field or 3D spectroscopy. We discuss advantages and drawbacks of this type of observations and highlight a few science projects enabled by this method. In the second part we describe our 3D spectroscopic survey of Blue Compact Dwarf Galaxies. We show preliminary results from data taken with the VIMOS integral field unit and give an outlook on how automated spectral analysis and forthcoming instruments can provide a new view on star formation and associated processes in dwarf galaxies.Comment: To appear in the proceedings of the JENAM 2010 Symposium "Dwarf Galaxies: Keys to Galaxy Formation and Evolution" (Lisbon, 9-10 September 2010), P. Papaderos, S. Recchi, G. Hensler (eds.), Springer Verlag (2011), in pres

    A Tunable Echelle Imager

    Get PDF
    We describe and evaluate a new instrument design called a Tunable Echelle Imager (TEI). In this instrument, the output from an imaging Fabry-Perot interferometer is cross-dispersed by a grism in one direction and dispersed by an echelle grating in the perpendicular direction. This forms a mosaic of different narrow-band images of the same field on a detector. It offers a distinct wavelength multiplex advantage over a traditional imaging Fabry-Perot device. Potential applications of the TEI include spectrophotometric imaging and OH-suppressed imaging by rejection.Comment: 11 pages, 12 figures, accepted by PAS

    Mapping the inner regions of the polar disk galaxy NGC4650A with MUSE

    Get PDF
    [abridged] The polar disk galaxy NGC4650A was observed during the commissioning of the MUSE at the ESO VLT to obtain the first 2D map of the velocity and velocity dispersion for both stars and gas. The new MUSE data allow the analysis of the structure and kinematics towards the central regions of NGC4650A, where the two components co-exist. These regions were unexplored by the previous long-slit literature data available for this galaxy. The extended view of NGC~4650A given by the MUSE data is a galaxy made of two perpendicular disks that remain distinct and drive the kinematics right into the very centre of this object. In order to match this observed structure for NGC4650A, we constructed a multicomponent mass model made by the combined projection of two disks. By comparing the observations with the 2D kinematics derived from the model, we found that the modelled mass distribution in these two disks can, on average, account for the complex kinematics revealed by the MUSE data, also in the central regions of the galaxy where the two components coexist. This result is a strong constraint on the dynamics and formation history of this galaxy; it further supports the idea that polar disk galaxies like NGC~4650A were formed through the accretion of material that has different angular momentum.Comment: 14 pages, 10 figures; accepted for publication in Astronomy & Astrophysic

    Universal Fault-Tolerant Computation on Decoherence-Free Subspaces

    Get PDF
    A general scheme to perform universal quantum computation within decoherence-free subspaces (DFSs) of a system's Hilbert space is presented. This scheme leads to the first fault-tolerant realization of universal quantum computation on DFSs with the properties that (i) only one- and two-qubit interactions are required, and (ii) the system remains within the DFS throughout the entire implementation of a quantum gate. We show explicitly how to perform universal computation on clusters of the four-qubit DFS encoding one logical qubit each under "collective decoherence" (qubit-permutation-invariant system-bath coupling). Our results have immediate relevance to a number of solid-state quantum computer implementations, in particular those in which quantum logic is implemented through exchange interactions, such as the recently proposed spin-spin coupled GaAs quantum dot arrays and the Si:31^{31}P nuclear spin arrays.Comment: 5 pages, no figures. Many small changes and clarifications. Expanded discussion of relevance to solid-state implementations. This version to appear in Phys. Rev. Let

    Direct experimental evidence of free fermion antibunching

    Full text link
    Fermion antibunching was observed on a beam of free noninteracting neutrons. A monochromatic beam of thermal neutrons was first split by a graphite single crystal, then fed to two detectors, displaying a reduced coincidence rate. The result is a fermionic complement to the Hanbury Brown and Twiss effect for photons.Comment: 4 pages, 2 figure

    Optimal correction of concatenated fault-tolerant quantum codes

    Full text link
    We present a method of concatenated quantum error correction in which improved classical processing is used with existing quantum codes and fault-tolerant circuits to more reliably correct errors. Rather than correcting each level of a concatenated code independently, our method uses information about the likelihood of errors having occurred at lower levels to maximize the probability of correctly interpreting error syndromes. Results of simulations of our method applied to the [[4,1,2]] subsystem code indicate that it can correct a number of discrete errors up to half of the distance of the concatenated code, which is optimal.Comment: 7 pages, 2 figures, published versio

    Universal Leakage Elimination

    Full text link
    ``Leakage'' errors are particularly serious errors which couple states within a code subspace to states outside of that subspace thus destroying the error protection benefit afforded by an encoded state. We generalize an earlier method for producing leakage elimination decoupling operations and examine the effects of the leakage eliminating operations on decoherence-free or noiseless subsystems which encode one logical, or protected qubit into three or four qubits. We find that by eliminating the large class of leakage errors, under some circumstances, we can create the conditions for a decoherence free evolution. In other cases we identify a combination decoherence-free and quantum error correcting code which could eliminate errors in solid-state qubits with anisotropic exchange interaction Hamiltonians and enable universal quantum computing with only these interactions.Comment: 14 pages, no figures, new version has references updated/fixe
    corecore