32 research outputs found

    The Ubiquity of Micrometer-Sized Dust Grains in the Dense Interstellar Medium

    Full text link
    Cold molecular clouds are the birthplaces of stars and planets, where dense cores of gas collapse to form protostars. The dust mixed in these clouds is thought to be made of grains of an average size of 0.1 micrometer. We report the widespread detection of the coreshine effect as a direct sign of the existence of grown, micrometer-sized dust grains. This effect is seen in half of the cores we have analyzed in our survey, spanning all Galactic longitudes, and is dominated by changes in the internal properties and local environment of the cores, implying that the coreshine effect can be used to constrain fundamental core properties such as the three-dimensional density structure and ages and also the grain characteristics themselves

    Chemistry under EUV Irradiation of H2_2-CO-N2_2 Gas Mixtures: Implications for Photochemistry in the Outer CSE of Evolved Stars

    Full text link
    {CircumStellar Envelopes (CSEs) of stars are complex chemical objects for which theoretical models encounter difficulties in elaborating a comprehensive overview of the occurring chemical processes. Along with photodissociation, ion-neutral reactions and dissociative recombination might play an important role in controlling molecular growth in outer CSEs. The aim of this work is to provide experimental insights into pathways of photochemistry-driven molecular growth within outer CSEs to draw a more complete picture of the chemical processes occurring within these molecule-rich environments. A simplified CSE environment was therefore reproduced in the laboratory through gas-phase experiments exposing relevant gas mixtures to an Extreme UltraViolet (EUV) photon source. This photochemical reactor should ultimately allow us to investigate chemical processes and their resulting products occurring under conditions akin to outer CSEs. We used a recently developed EUV lamp coupled to the APSIS photochemical cell to irradiate CSE relevant gas mixtures of H2_2, CO and N2_2, at one wavelength, 73.6 nm. The detection and identification of chemical species in the photochemical reactor was achieved through in-situ mass spectrometry analysis of neutral and cationic molecules. We find that exposing CO-N2_2-H2_2 gas mixtures to EUV photons at 73.6 nm induces photochemical reactions that yield the formation of complex, neutral and ionic species. Our work shows that N2_2H+^+ can be formed through photochemistry along with highly oxygenated ion molecules like HCO+^+ in CSE environments. We also observe neutral N-rich organic species including triazole and aromatic molecules. These results confirm the suitability of our experimental setting to investigate photochemical reactions and provide fundamental insights into the mechanisms of molecular growth in the outer CSEs

    CORESHINE : a tracer of grain growth in dark clouds

    Get PDF
    Scattering by dust grains in the interstellar medium is a well-known phenomenon in the optical and near-infrared domains. We serendipitously discovered the effect of scattering in the mid-infrared in the dark cloud L183, and nicknamed the effect "coreshine". We investigated over 200 sources from both the Spitzer Archive and a new warm Spitzer mission program to check the frequency of the phenomenon and found over 50% of the cases to be positive, which is possibly only a lower limit. We see differences depending on the Galactic regions we investigate. Taurus is a highly successful target while the Galactic plane is too bright to let coreshine appear in emission. We present coreshine as a large grain tracer and we discuss its absence in the Gum/Vela region, which would indicate that big grains have been recently destroyed by the supernova blast wave. Finally, we discuss the prospect for future coreshine searches from archives, present and future instruments

    Tracing micron-sized grains in molecular clouds with coreshine

    Get PDF
    Recently discovered scattered light at 3-5 µm from low-mass cores (so-called "coreshine") reveals the presence of grains around 1 µm. But only a fraction of the cores investigated so far show the effect. We derive a simple limit for detecting scattered light from a low-mass core can be derived. The extinction by the core prohibits detection in bright parts of the Galactic plane, the phase function favors the off-plane detection near the Galactic center and to some extent near the Galactic anti-center. Our 3D radiative transfer calculations for the core L260 show that also the K band is capable of probing coreshine, and that the shape of the Ks band surface brightness profile limits the largest grains to sizes of to 1-1.5 µm. For the core L1506C showing coreshine and strong depletion, but low density and turbulence our grain growth calculations and radiative transfer modeling show detectable coreshine at 3.6 µm only when we increase the core density and the turbulence above what is currently observed. The grains could be part of primitive omnipresent large grain population becoming visible in the densest part of the ISM, could have been grown under the turbulent dense conditions of former cores, or in L1506C itself. In the later case, L1506C must have passed through a period of larger density and/or stronger turbulence. This would be consistent with the surprisingly strong depletion usually attributed to high column densities, and with the large-scale outward motion of the core envelope observed today

    Dust properties inside molecular clouds from coreshine modeling and observations

    Get PDF
    Context. Using observations to deduce dust properties, grain size distribution, and physical conditions in molecular clouds is a highly degenerate problem. Aims. The coreshine phenomenon, a scattering process at 3.6 and 4.5 μ\mum that dominates absorption, has revealed its ability to explore the densest parts of clouds. We want to use this effect to constrain the dust parameters. The goal is to investigate to what extent grain growth (at constant dust mass) inside molecular clouds is able to explain the coreshine observations. We aim to find dust models that can explain a sample of Spitzer coreshine data. We also look at the consistency with near-infrared data we obtained for a few clouds. Methods. We selected four regions with a very high occurrence of coreshine cases: Taurus-Perseus, Cepheus, Chameleon and L183/L134. We built a grid of dust models and investigated the key parameters to reproduce the general trend of surface bright- nesses and intensity ratios of both coreshine and near-infrared observations with the help of a 3D Monte-Carlo radiative transfer code. The grid parameters allow to investigate the effect of coagulation upon spherical grains up to 5 μ\mum in size derived from the DustEm diffuse interstellar medium grains. Fluffiness (porosity or fractal degree), ices, and a handful of classical grain size distributions were also tested. We used the near- and mostly mid-infrared intensity ratios as strong discriminants between dust models. Results. The determination of the background field intensity at each wavelength is a key issue. In particular, an especially strong background field explains why we do not see coreshine in the Galactic plane at 3.6 and 4.5 μ\mum. For starless cores, where detected, the observed 4.5 μ\mum / 3.6 μ\mum coreshine intensity ratio is always lower than \sim0.5 which is also what we find in the models for the Taurus-Perseus and L183 directions. Embedded sources can lead to higher fluxes (up to four times greater than the strongest starless core fluxes) and higher coreshine ratios (from 0.5 to 1.1 in our selected sample). Normal interstellar radiation field conditions are sufficient to find suitable grain models at all wavelengths for starless cores. The standard interstellar grains are not able to reproduce observations and, due to the multi-wavelength approach, only a few grain types meet the criteria set by the data. Porosity does not affect the flux ratios while the fractal dimension helps to explain coreshine ratios but does not seem able to reproduce near-infrared observations without a mix of other grain types. Conclusions. Combined near- and mid-infrared wavelengths confirm the potential to reveal the nature and size distribution of dust grains. Careful assessment of the environmental parameters (interstellar and background fields, embedded or nearby reddened sources) is required to validate this new diagnostic

    Chemical modeling of L183 (= L134N) : an estimate of the ortho/para H2 ratio

    Get PDF
    Context. The high degree of deuteration observed in some prestellar cores depends on the ortho-to-para H2 ratio through the H3+ fractionation. Aims. We want to constrain the ortho/para H2 ratio across the L183 prestellar core. This is mandatory to correctly describe the deuter- ation amplification phenomenon in depleted cores such as L183 and to relate the total (ortho+para) H2D+ abundance to the sole ortho-H2D+ column density measurement. Methods. To constrain this ortho/para H2 ratio and derive its profile, we make use of the N2D+ /N2H+ ratio and of the ortho-H2D+ observations performed across the prestellar core. We use two simple chemical models limited to an almost totally depleted core description. New dissociative recombination and trihydrogen cation-dihydrogen reaction rates (including all isotopologues) are presented in this paper and included in our models. Results. We estimate the H2D+ ortho/para ratio in the L183 cloud, and constrain the H2 ortho/para ratio : we show that it is varying across the prestellar core by at least an order of magnitude being still very high (~0.1) in most of the cloud. Our time-dependent model indicates that the prestellar core is presumably older than 1.5-2 x 10^5 years but that it may not be much older. We also show that it has reached its present density only recently and that its contraction from a uniform density cloud can be constrained. Conclusions. A proper understanding of deuteration chemistry cannot be attained without taking into account the whole ortho/para family of molecular hydrogen and trihydrogen cation isotopologues as their relations are of utmost importance in the global scheme. Tracing the ortho/para H2 ratio should also give useful constraints on the dynamical evolution of prestellar cores

    Tracing micron-sized grains in molecular clouds with coreshine

    Get PDF
    Recently discovered scattered light at 3-5 µm from low-mass cores (so-called "coreshine") reveals the presence of grains around 1 µm. But only a fraction of the cores investigated so far show the effect. We derive a simple limit for detecting scattered light from a low-mass core can be derived. The extinction by the core prohibits detection in bright parts of the Galactic plane, the phase function favors the off-plane detection near the Galactic center and to some extent near the Galactic anti-center. Our 3D radiative transfer calculations for the core L260 show that also the K band is capable of probing coreshine, and that the shape of the Ks band surface brightness profile limits the largest grains to sizes of to 1-1.5 µm. For the core L1506C showing coreshine and strong depletion, but low density and turbulence our grain growth calculations and radiative transfer modeling show detectable coreshine at 3.6 µm only when we increase the core density and the turbulence above what is currently observed. The grains could be part of primitive omnipresent large grain population becoming visible in the densest part of the ISM, could have been grown under the turbulent dense conditions of former cores, or in L1506C itself. In the later case, L1506C must have passed through a period of larger density and/or stronger turbulence. This would be consistent with the surprisingly strong depletion usually attributed to high column densities, and with the large-scale outward motion of the core envelope observed today
    corecore