2,702 research outputs found

    Users guide for guidance and control Launch and Abort Simulation for Spacecraft (LASS), volume 1

    Get PDF
    The mathematical models and computer program which are used to implement LASS are described. The computer program provides for a simulation of boost to orbit and abort capability from boost trajectories to a prescribed target. The abort target provides a decision point for engine shutdown from which the vehicle coasts to the vicinity of the selected abort recovery site. The simulation is a six degree of freedom simulation describing a rigid body. The vehicle is influenced by forces and moments from nondistributed aerodynamics. An adaptive autopilot is provided to control vehicle attitudes during powered and unpowered flight. A conventional autopilot is provided for study of vehicle during powered flight

    G and C boost and abort study summary, exhibit B

    Get PDF
    A six degree of freedom simulation of rigid vehicles was developed to study space shuttle vehicle boost-abort guidance and control techniques. The simulation was described in detail as an all digital program and as a hybrid program. Only the digital simulation was implemented. The equations verified in the digital simulation were adapted for use in the hybrid simulation. Study results were obtained from four abort cases using the digital program

    Exozodiacal Dust Workshop

    Get PDF
    The purpose of the workshop was to understand what effect circumstellar dust clouds will have on NASA's proposed Terrestrial Planet Finder (TPF) mission's ability to search for terrestrial-sized planets orbiting stars in the solar neighborhood. The workshop participants reviewed the properties of TPF, summarized what is known about the local zodiacal cloud and about exozodiacal clouds, and determined what additional knowledge must be obtained to help design TPF for maximum effectiveness within its cost constraint. Recommendations were made for ways to obtain that additional knowledge, at minimum cost. The workshop brought together approximately 70 scientists, from four different countries. The active participants included astronomers involved in the study of the local zodiacal cloud, in the formation of stars and planetary systems, and in the technologies and techniques of ground- and space-based infrared interferometry. During the course of the meeting, 15 invited talks and 20 contributed poster papers were presented, and there were four working sessions. This is a collection of the invited talks, contributed poster papers, and summaries of the working sessions

    The Inner Rings of Beta Pictoris

    Get PDF
    We present Keck images of the dust disk around Beta Pictoris at 17.9 microns that reveal new structure in its morphology. Within 1" (19 AU) of the star, the long axis of the dust emission is rotated by more than 10 degrees with respect to that of the overall disk. This angular offset is more pronounced than the warp detected at 3.5" by HST, and in the opposite direction. By contrast, the long axis of the emission contours at ~ 1.5" from the star is aligned with the HST warp. Emission peaks between 1.5" and 4" from the star hint at the presence of rings similar to those observed in the outer disk at ~ 25" with HST/STIS. A deconvolved image strongly suggests that the newly detected features arise from a system of four non-coplanar rings. Bayesian estimates based on the primary image lead to ring radii of 14+/-1 AU, 28+/-3 AU, 52+/-2 AU and 82+/-2 AU, with orbital inclinations that alternate in orientation relative to the overall disk and decrease in magnitude with increasing radius. We believe these new results make a strong case for the existence of a nascent planetary system around Beta Pic.Comment: 5 pages, 2 figures, PDF format. Published in ApJL, December 20,200

    Penetration depth of low-coherence enhanced backscattered light in sub-diffusion regime

    Full text link
    The mechanisms of photon propagation in random media in the diffusive multiple scattering regime have been previously studied using diffusion approximation. However, similar understanding in the low-order (sub-diffusion) scattering regime is not complete due to difficulties in tracking photons that undergo very few scatterings events. Recent developments in low-coherence enhanced backscattering (LEBS) overcome these difficulties and enable probing photons that travel very short distances and undergo only a few scattering events. In LEBS, enhanced backscattering is observed under illumination with spatial coherence length L_sc less than the scattering mean free path l_s. In order to understand the mechanisms of photon propagation in LEBS in the subdiffusion regime, it is imperative to develop analytical and numerical models that describe the statistical properties of photon trajectories. Here we derive the probability distribution of penetration depth of LEBS photons and report Monte Carlo numerical simulations to support our analytical results. Our results demonstrate that, surprisingly, the transport of photons that undergo low-order scattering events has only weak dependence on the optical properties of the medium (l_s and anisotropy factor g) and strong dependence on the spatial coherence length of illumination, L_sc, relative to those in the diffusion regime. More importantly, these low order scattering photons typically penetrate less than l_s into the medium due to low spatial coherence length of illumination and their penetration depth is proportional to the one-third power of the coherence volume (i.e. [l_s \pi L_sc^2 ]^1/3).Comment: 32 pages(including 7 figures), modified version to appear in Phys. Rev.

    New Rotation Periods in the Pleiades: Interpreting Activity Indicators

    Full text link
    We present results of photometric monitoring campaigns of G, K and M dwarfs in the Pleiades carried out in 1994, 1995 and 1996. We have determined rotation periods for 18 stars in this cluster. In this paper, we examine the validity of using observables such as X-ray activity and amplitude of photometric variations as indicators of angular momentum loss. We report the discovery of cool, slow rotators with high amplitudes of variation. This contradicts previous conclusions about the use of amplitudes as an alternate diagnostic of the saturation of angular momentum loss. We show that the X-ray data can be used as observational indicators of mass-dependent saturation in the angular momentum loss proposed on theoretical grounds

    The JBEI quantitative metabolic modeling library (jQMM): a python library for modeling microbial metabolism

    Get PDF
    Modeling of microbial metabolism is a topic of growing importance in biotechnology. Mathematical modeling helps provide a mechanistic understanding for the studied process, separating the main drivers from the circumstantial ones, bounding the outcomes of experiments and guiding engineering approaches. Among different modeling schemes, the quantification of intracellular metabolic fluxes (i.e. the rate of each reaction in cellular metabolism) is of particular interest for metabolic engineering because it describes how carbon and energy flow throughout the cell. In addition to flux analysis, new methods for the effective use of the ever more readily available and abundant -omics data (i.e. transcriptomics, proteomics and metabolomics) are urgently needed

    A Spitzer/IRAC Search for Substellar Companions of the Debris Disk Star epsilon Eridani

    Full text link
    We have used the InfraRed Array Camera (IRAC) onboard the Spitzer Space telescope to search for low mass companions of the nearby debris disk star epsilon Eridani. The star was observed in two epochs 39 days apart, with different focal plane rotation to allow the subtraction of the instrumental Point Spread Function, achieving a maximum sensitivity of 0.01 MJy/sr at 3.6 and 4.5 um, and 0.05 MJy/sr at 5.8 and 8.0 um. This sensitivity is not sufficient to directly detect scattered or thermal radiation from the epsilon Eridani debris disk. It is however sufficient to allow the detection of Jovian planets with mass as low as 1 MJ in the IRAC 4.5 um band. In this band, we detected over 460 sources within the 5.70 arcmin field of view of our images. To test if any of these sources could be a low mass companion to epsilon Eridani, we have compared their colors and magnitudes with models and photometry of low mass objects. Of the sources detected in at least two IRAC bands, none fall into the range of mid-IR color and luminosity expected for cool, 1 Gyr substellar and planetary mass companions of epsilon Eridani, as determined by both models and observations of field M, L and T dwarf. We identify three new sources which have detections at 4.5 um only, the lower limit placed on their [3.6]-[4.5] color consistent with models of planetary mass objects. Their nature cannot be established with the currently available data and a new observation at a later epoch will be needed to measure their proper motion, in order to determine if they are physically associated to epsilon Eridani.Comment: 36 pages, to be published on The Astrophysical Journal, vol. 647, August 200

    New Debris Disk Candidates Around 49 Nearby Stars

    Get PDF
    We present 49 new candidate debris disks that were detected around nearby stars with the Spitzer Space Telescope using the Multiband Imaging Photometer (MIPS) at 24 μm (MIPS24) and 70 μm (MIPS70). The survey sample was composed of stars within 25 pc of the Sun that were not previously observed by any other MIPS survey. Only stars with V < 9 were selected, corresponding to spectral types earlier than M0. MIPS24 integration times were chosen to detect the stellar photosphere at 10σ levels or better. MIPS70 observations were designed to detect excess infrared emission from any star in the MIPS70 sample with a disk as luminous at that around epsilon Eridani. The resulting sample included over 436 nearby stars that were observed with both MIPS24 and MIPS70, plus an additional 198 observed only with MIPS24. Debris disk candidates were defined as targets where excess emission was detected at 3σ levels or greater, and the ratio of observed flux density to expected photosphere emission was three standard deviations or more above the mean value for the sample. The detection rate implied by the resulting 29 MIPS24 candidates is 4.6%. A detection rate of 4.8% is implied by 21 MIPS70 candidates. The distribution of spectral types for stars identified as candidates resembles that of the general sample and yields strong evidence that debris-disk occurrence does not decrease for K dwarfs. Modeling of non-uniform sensitivity in the sample is required to interpret quantitative estimates of the overall detection frequency and will be presented in a future work
    corecore