1,904 research outputs found

    Multifrequency Observations of Giant Radio Pulses from the Millisecond Pulsar B1937+21

    Full text link
    Giant pulses are short, intense outbursts of radio emission with a power-law intensity distribution that have been observed from the Crab Pulsar and PSR B1937+21. We have undertaken a systematic study of giant pulses from PSR B1937+21 using the Arecibo telescope at 430, 1420, and 2380 MHz. At 430 MHz, interstellar scattering broadens giant pulses to durations of ∌50ÎŒ\sim50 \musecs, but at higher frequencies the pulses are very short, typically lasting only ∌1\sim1-2ÎŒ2 \musecs. At each frequency, giant pulses are emitted only in narrow (\lsim10 \mus) windows of pulse phase located ∌55\sim 55-70ÎŒ70 \musec after the main and interpulse peaks. Although some pulse-to-pulse jitter in arrival times is observed, the mean arrival phase appears stable; a timing analysis of the giant pulses yields precision competitive with the best average profile timing studies. We have measured the intensity distribution of the giant pulses, confirming a roughly power-law distribution with approximate index of -1.8, contributing \gsim0.1% to the total flux at each frequency. We also find that the intensity of giant pulses falls off with a slightly steeper power of frequency than the ordinary radio emission.Comment: 21 pages, 10 Postscript figures; LaTeX with aaspp4.sty and epsf.tex; submitted to Ap

    Treatment with Mycophenolat Mofetil of Steroid-Dependent Asthma—One Case of Severe Asthma

    Get PDF
    Background. Some patients with severe nonallergic asthma can be difficult to treat with conventional therapy. Mycophenolat Mofetil (MMF) is an immunosuppressive drug with multiple mechanisms. There is theoretical support of specific effect of MMF on severe asthma, in “difficult to treat” patients. The aim of the present case was to explore whether MMF had an effect in one case of severe refractory asthma. The patient. This case deals with one patient with very severe nonallergic treatment refractory asthma who experienced treatment failure on ordinary antiasthmatic treatment and severe adverse events to conventional immunosupressive treatment. She was then treated with MMF. Results. The patient experienced a gain in FEV1 and a reduction in the need for oral glucocorticosteroids as well as seldom need of when needed bronchodilator both during daytime and night. It therefore seems very interesting to examine the use of MMF for severe refractory asthma with further clinical studies and basic cellular trials

    Building Capacity in Nonprofit Organizations

    Get PDF
    Offers a capacity building model that is based on a review of civil society, sustainable development, and organizational management literature. Reviews effective capacity building programs sponsored or operated by foundations. Includes recommendations

    Coherently Dedispersed Polarimetry of Millisecond Pulsars

    Full text link
    We present a large sample of high-precision, coherently-dedispersed polarization profiles of millisecond pulsars (MSPs) at frequencies between 410 and 1414 MHz. These data include the first polarimetric observations of several of the pulsars, and the first low-frequency polarization profiles for others. Our observations support previous suggestions that the pulse shapes and polarimetry of MSPs are more complex than those of their slower relatives. An immediate conclusion is that polarimetry-based classification schemes proposed for young pulsars are of only limited use when applied to millisecond pulsars.Comment: 28 pages, 10 figures. Text matches version that appeared in ApJS. Full paper with high-resolution figures available at ftp://ftp.jb.man.ac.uk/pub/psr/papers/msppolpton.ps.g

    Quasar Proper Motions and Low-Frequency Gravitational Waves

    Get PDF
    We report observational upper limits on the mass-energy of the cosmological gravitational-wave background, from limits on proper motions of quasars. Gravitational waves with periods longer than the time span of observations produce a simple pattern of apparent proper motions over the sky, composed primarily of second-order transverse vector spherical harmonics. A fit of such harmonics to measured motions yields a 95%-confidence limit on the mass-energy of gravitational waves with frequencies <2e-9 Hz, of <0.11/h*h times the closure density of the universe.Comment: 15 pages, 1 figure. Also available at http://charm.physics.ucsb.edu:80/people/cgwinn/cgwinn_group/index.htm

    Simultaneous Dual Frequency Observations of Giant Pulses from the Crab Pulsar

    Get PDF
    Simultaneous measurements of giant pulses from the Crab pulsar were taken at two widely spaced frequencies using the real-time detection of a giant pulse at 1.4 GHz at the Very Large Array to trigger the observation of that same pulse at 0.6 GHz at a 25-m telescope in Green Bank, WV. Interstellar dispersion of the signals provided the necessary time to communicate the trigger across the country via the Internet. About 70% of the pulses are seen at both 1.4 GHz and 0.6 GHz, implying an emission mechanism bandwidth of at least 0.8 GHz at 1 GHz for pulse structure on time scales of one to ten microseconds. The arrival times at both frequencies display a jitter of 100 microseconds within the window defined by the average main pulse profile and are tightly correlated. This tight correlation places limits on both the emission mechanism and on frequency dependent propagation within the magnetosphere. At 1.4 GHz the giant pulses are resolved into several, closely spaced components. Simultaneous observations at 1.4 GHz and 4.9 GHz show that the component splitting is frequency independent. We conclude that the multiplicity of components is intrinsic to the emission from the pulsar, and reject the hypothesis that this is the result of multiple imaging as the signal propagates through the perturbed thermal plasma in the surrounding nebula. At both 1.4 GHz and 0.6 GHz the pulses are characterized by a fast rise time and an exponential decay time which are correlated. The pulse broadening with its exponential decay form is most likely the result of multipath propagation in intervening ionized gas.Comment: LaTeX, 18 pages, 7 figures, accepted for publication in The Astrophysical Journa

    Size of the Vela Pulsar's Emission Region at 13 cm Wavelength

    Get PDF
    We present measurements of the size of the Vela pulsar in 3 gates across the pulse, from observations of the distribution of intensity. We calculate the effects on this distribution of noise in the observing system, and measure and remove it using observations of a strong continuum source. We also calculate and remove the expected effects of averaging in time and frequency. We find that effects of variations in pulsar flux density and instrumental gain, self-noise, and one-bit digitization are undetectably small. Effects of normalization of the correlation are detectable, but do not affect the fitted size. The size of the pulsar declines from 440 +/- 90 km (FWHM of best-fitting Gaussian distribution) to less than 200 km across the pulse. We discuss implications of this size for theories of pulsar emission.Comment: 51 pages, 10 figures. To appear in ApJ. Also available at http://www.physics.ucsb.edu/~cgwinn/pulsar/size_14.p

    Can billiard eigenstates be approximated by superpositions of plane waves?

    Full text link
    The plane wave decomposition method (PWDM) is one of the most popular strategies for numerical solution of the quantum billiard problem. The method is based on the assumption that each eigenstate in a billiard can be approximated by a superposition of plane waves at a given energy. By the classical results on the theory of differential operators this can indeed be justified for billiards in convex domains. On the contrary, in the present work we demonstrate that eigenstates of non-convex billiards, in general, cannot be approximated by any solution of the Helmholtz equation regular everywhere in R2\R^2 (in particular, by linear combinations of a finite number of plane waves having the same energy). From this we infer that PWDM cannot be applied to billiards in non-convex domains. Furthermore, it follows from our results that unlike the properties of integrable billiards, where each eigenstate can be extended into the billiard exterior as a regular solution of the Helmholtz equation, the eigenstates of non-convex billiards, in general, do not admit such an extension.Comment: 23 pages, 5 figure
    • 

    corecore