9 research outputs found

    Hybrid Process Mining:Inference & Evaluation Across Imperative & Declarative Approaches

    No full text

    Imperative versus Declarative Process Mining:An Empirical Comparison

    No full text

    Mining patient flow patterns in a surgical ward

    Get PDF
    Surgery is a highly critical and costly procedure, and there is an imperative need to improve the efficiency in surgical wards. Analyzing surgical patient flow and predicting cycle times of different peri-operative phases can help improve the scheduling and management of surgeries. In this paper, we propose a novel approach to mining temporal patterns of surgical patient flow with the use of Bayesian belief networks. We present and compare three classes of probabilistic models and we evaluate them with respect to predicting cycle times of individual phases of patient flow. The results of this study support previous work that surgical times are log-normally distributed. We also show that the inclusion of a clustering pre-processing step improves the performance of our models considerably.Publisher PD

    Stochastic workflow modeling in a surgical ward:towards simulating and predicting patient flow

    Get PDF
    Intelligent systems play an increasingly central role in healthcare systems worldwide. Nonetheless, operational friction represents an obstacle to full utilization of scarce resources and improvement of service standards. In this paper we address the challenge of developing data-driven models of complex workflow systems - a prerequisite for harnessing intelligent technologies for workflow improvement. We present a proof-of-concept model parametrized using real-world data and constructed based on domain knowledge from the Royal Infirmary of Edinburgh, demonstrating how off-the-shelf process mining, machine learning and stochastic process modeling tools can be combined to build predictive models that capture complex control flow, constraints, policies and guidelines
    corecore