
Noname manuscript No.
(will be inserted by the editor)

Entropy as a Measure of Log Variability

Christoffer Olling Back · Søren Debois · Tijs Slaats

Received: date / Accepted: date

Abstract Process mining algorithms fall in two classes: im-
perative miners output flow-diagrams, showing all possible
paths, whereas declarative miners output constraints, show-
ing the rules governing a process. But given a log, how do
we know which of the two to apply? Assuming that logs
exhibiting a large degree of variability are more suited for
declarative miners, we can attempt to answer this question
by defining a suitable measure of the variability of the log.
This paper reports on an exploratory study into the use of en-
tropy measures as metrics of variability. We survey notions
of entropy used, e.g., in physics; we propose variant notions
likely more suitable for the field of process mining; we pro-
vide an implementation of every entropy notion discussed;
and we report entropy measures for a collection of both syn-
thetic and real-life logs. Finally, based on anecdotal indica-
tions of which logs are better suited for declarative/imper-
ative mining, we identify the most promising measures for
future studies. For estimating overall entropy, global-block
and k-nearest neighbour estimators of entropy appear most

This work is supported by the Hybrid Business Process Management
Technologies project (DFF-6111-00337) funded by the Danish Council
for Independent Research.

Christoffer Olling Back
University of Copenhagen, Department of Computer Science
Universitetsparken 1
DK-2100 Copenhagen Ø
E-mail: back@di.ku.dk

Søren Debois
IT University of Copenhagen
Rued Langgaards Vej 7
DK-2300 Copenhagen S
E-mail: debois@itu.dk

Tijs Slaats
University of Copenhagen, Department of Computer Science
Universitetsparken 1
DK-2100 Copenhagen Ø
E-mail: slaats@di.ku.dk

promising and excel at identifying noise in logs. For estimat-
ing entropy rate we identify Lempel-Ziv and certain variants
of k-block estimators performing well, and note that the for-
mer is more stable, but sensitive to noise, while the latter is
less stable, being sensitive to cutoff constraints determining
block size.

Changes This paper is an extension of earlier work pre-
sented at the First Workshop on Business Process Innova-
tion with Artificial Intelligence [7]. The present submission
expands substantially on its predecessor by including:

1. A discussion of assumptions regarding ergodicity and
stationarity in the Business Process Management (BPM)
context (Section 3.4).

2. A treatment of edit-distance based entropy approxima-
tion (Section 3.6).

3. A discussion of the use of entropy (H) vs. entropy rate
(h) (Section 4).

4. A treatment of the Lempel-Ziv entropy rate approxima-
tion (Section 4.2).

5. An open source implementation of these new measures
(Section 5).

6. Experimental evaluation of both old and the above new
measures on a selection of publicly available real-life
logs (Section 5).

7. Experimental evaluation of all measures on artificial logs
to test the effect of different modelling paradigms, con-
currency and noise (Section 5).

8. A discussion of the experiments leading to a tenuous
recommendation of potentially helpful measures. (Sec-
tion 6)

Keywords Process Mining · Hybrid Models · Process
Variability · Process Flexibility · Information Theory ·
Entropy · Knowledge Work

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/222785736?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Christoffer Olling Back et al.

1 Introduction

Two opposing lines of thought can be identified in the litera-
ture on process modelling notations. The imperative paradigm,
including notations such as Petri nets [2] and BPMN [32],
focuses on describing the flow of a process and is consid-
ered to be well-suited to structured processes with little vari-
ation. The declarative paradigm, including notations such
as Declare [33], DCR Graphs [14], and GSM [24] focuses
on describing the rules of a process and is considered to be
well-suited to unstructured processes with large degrees of
variation.

For processes with great variability, declarative miners
are often at an advantage: the many possible paths through
such a process may be succinctly represented by a small
number of constraints, whereas an imperative miner must
produce an impossible to read “spaghetti model” explicitly
showing all these many paths. Conversely, for processes with
great regularity, imperative miners are often at an advantage:
a small number of explicit paths describes the process con-
cisely, whereas a large and obtuse set of declarative con-
straints is necessary to capture that exact set of paths.

In this paper, we are motivated by the following ques-
tion, first identified in [15]: can we, based on an a priori
analysis of the input log, determine whether it is better suited
to imperative or declarative mining?

Such a measure is potentially important for hybrid min-
ing [34, 40], i.e., process mining where the output model is
a combination of declarative and imperative models [29, 35,
41]. Here, our proposed measure could be combined with
existing partitioning techniques [9, 20, 30, 42] to determine
for each partition if it is more suited for imperative or declar-
ative mining. Moreover, it is potentially useful for the devel-
opment of novel partitioning techniques that specifically aim
to separate structured and unstructured behaviour in a log.

We propose basing such a measure on the notion of en-
tropy from the field of information theory. Introduced by
Claude Shannon in his seminal 1948 paper [37], entropy
measures the information content of a random variable. In-
tuitively, we can think of entropy as the “degree of surprise”
we will experience when obtaining additional information
about the state of a system [8].

We propose that the entropy of an event log can serve as
a predictor of whether the generating process is structured
or unstructured and accordingly, whether it is best modelled
using declarative or imperative models. Highly structured
processes should generate low entropy logs, whereas more
flexible processes should generate high entropy logs. While
information theoretic tools have been previously applied to
predictive modelling [10], our application to discriminating
mining techniques is novel.

The key contribution of the present paper is to study ex-
actly how to measure the entropy of a given log. We study

various potential measures based on both entropy and en-
tropy rate, ranging from the near-trivial (trace), over language-
inspired ones (prefix, k-block, global block), to methods from
the study of dynamic systems and molecular structural anal-
ysis (nearest neighbours, Lempel-Ziv, block-based entropy
rate). We follow our theoretical study with an empirical study,
taking the various measures on both synthetic and real-life
logs.

In the absence of an existing classification of available
real-life logs into those suitable for declarative respectively
imperative mining, we are unfortunately unable to objec-
tively determine whether our entropy measures correctly dis-
tinguish declarative and imperative logs. However, we can
approximate such a classification from the known properties
of synthetic logs on the one hand and the common commu-
nity understanding of select real-life logs on the other, and
as such, qualitatively identify the most promising measures
for further study.

Altogether, the present paper contributes (1) a survey of
several entropy measures; (2) an implementation of these
measures; (3) an experimental evaluation on both synthetic
and real-life logs; and (4) based on this evaluation, a se-
lection of promising measures, with a discussion of their
strengths and shortcomings.

Overview. We first recall basic terminology and introduce
four running examples logs in Section 2. We recall Shannon
entropy and study ways to apply it in Section 3. In partic-
ular, we propose naive measures (trace- and prefix-entropy)
and measures from the literature (block entropy and edit dis-
tance measures). We proceed to consider entropy rate mea-
sures in Section 4, studying both block-based estimators and
Lempel-Ziv estimators. We report on implementation and
experimental results in Section 5, and discuss extensively in
Section 6. Finally, in Section 7, we conclude.

2 Process Logs

We recall the standard definitions of events, traces and pro-
cess logs [3]: an event is an occurrence of an activity in a
particular process instance, a trace is a sequence of events
of the same such instance, and a log is a multiset of such
traces.

Definition 1 (Events, Traces and Logs) LetΣ be an alpha-
bet of activities, s ∈ Σ.

A trace σ = 〈e1, . . . , en〉 is a finite, nonempty sequence
of an activities, i.e. a mapping σ : {1, . . . , n} 7→ Σ. An
event, denoted ei, is a specific occurrence of an activity in a
trace, i.e. ei = σ(i).

We write σ′ v σ to indicate that σ′ is a prefix of σ.
Finally, a log is a multiset [σw1

1 , . . . , σwn
n] with wi ∈ N de-

noting the multiplicity of trace σi.

Entropy as a Measure of Log Variability 3

In the sequel, we will refer extensively to the following
running example.

Example 1 In Figure 1 we present the following three logs:

– L1 is a very structured log, for which we can easily find
a compact imperative model: for example the Petri net
shown in Figure 2.

– L2 is the same log as L1, except some traces are now
more frequent than others.

– L3 is a much less structured log, with many variations in
the ways activities can be ordered.

Figure 3 shows a mined Petri net for the log L3, whereas
figure Figure 4 shows a Declare [33] model. The constraints
of the Declare model mean that:

1. a and b can not occur in the same trace,
2. after an a we always eventually see an h,
3. we must have seen at least one a before we can see a c,
4. we must have seen at least one d before we can see a c,
5. we must have seen at least one d before we can see an e,
6. after an e we always eventually see an f ,
7. we must have seen at least one f before we can see a g,
8. after an f we will immediately see a g.

Having a closer look at the Petri net will show that the De-
clare model gives a much more precise representation, mean-
ing that it allows less behaviour for which there is no evi-
dence in the log. In particular, in the Petri net the activity d
can occur at any point in the process, the precedence rela-
tions to c and e are lost. Similarly, the lower branch of the
Petri net allows almost any interleaving of activities, with
the exception that g should always be preceded by f , and
c should always be preceded by a or h. While there exists
no conclusive research on measures of relative understand-
ability of these different notations, and this remains a hot
topic of debate, it is worth noting that the Petri net employs
a significantly larger number of graphical elements than the
Declare model.

We will need to disregard the multiplicities of traces, in
effect flattening the log. This is a common operation in the
literature, see, e.g., [4].

Definition 2 Let flatten be the function on logs which given
a log L produces the corresponding set, i.e.,

flatten([σw1
1 , . . . , σwn

n]) = [σ1
1 , . . . , σ

1
n] = {σ1, . . . , σn}

Example 2 The logs L1 and L2 differ only in non-zero mul-
tiplicities of traces, so flatten(L1) = flatten(L2).

Flattening logs is particularly useful when one is inter-
ested in finding deterministic models that approximate as
accurately as possible the language exhibited by a log. Most
state-of-the-art process mining algorithms generate models

in deterministic notations (e.g. Declare, Petri nets or BPMN).
If the intention is for the model to support all possible be-
haviour, and not just the most common behaviour, then it
makes sense to treat each variation as equal when measuring
entropy. In this way we avoid treating logs differently based
solely on the statistical distribution of the traces (which will
not be represented in the mined models), instead of the in-
herent entropy of the language that the models should repre-
sent.

3 Entropy and Process Logs

Entropy is a measure of the information required, e.g. the av-
erage number of bits, to represent an outcome of a stochastic
variable, intuitively indicating the “degree of surprise” upon
learning a particular outcome [8]. In this paper we focus on
Shannon’s formulation of entropy [37], fundamental to the
field of information theory.

Definition 3 (Shannon entropy) Given a discrete random
variable, X , taking on n possible values with associated
probabilities p1, p2, . . . , pn, (Shannon) entropy, denoted as
H , is given by the expected value of the information content
of X:

H = H(X) = −
n∑
i=1

pi logb pi (3.1)

The base of the logarithm corresponds to the choice of cod-
ing scheme (i.e., for binary b = 2 and for decimal b = 10).
We shall use the binary logarithm in the sequel.

Shannon justified this choice of measure with the fact
that it is (1) continuous w.r.t. pi (2) monotonically increasing
w.r.t. n under uniform distributions and (3) additive under
decomposition of choices, i.e.,

H(p1, p2, p3) = H(p1, (p2 + p3)) + (p2 + p3)H(p2, p3)

Entropy can be seen as a measure of the structure or
predictability of messages coming from some information
source. This has important implications for encoding and
compression schemes, since homogeneous (i.e., highly re-
dundant) messages can be significantly compressed by as-
signing shorter codes to likely outcomes at the expense of
using longer codes for very rare outcomes. In fact, Shan-
non’s noiseless coding theorem [26] proves thatH is a lower
bound on the average number of measurement units (bits)
needed for lossless compression.

Estimating the entropy of sequences of symbols, includ-
ing natural languages, is an active field of research and has
implications in areas such as bioinformatics, molecular anal-
ysis, and chaotic dynamical systems which can be analysed

4 Christoffer Olling Back et al.

L1

〈a, b, c, d, f, g, h〉5
〈a, b, c, e, f, g, h〉5
〈a, b, c, d, f, g〉5
〈a, b, c, e, f, g〉5
〈a, b, b, c, d, f, g, h〉5
〈a, b, b, c, e, f, g, h〉5
〈a, b, b, c, d, f, g〉5
〈a, b, b, c, e, f, g〉5

L2

〈a, b, c, d, f, g, h〉15
〈a, b, c, e, f, g, h〉8
〈a, b, c, d, f, g〉5
〈a, b, c, e, f, g〉2
〈a, b, b, c, d, f, g, h〉3
〈a, b, b, c, e, f, g, h〉4
〈a, b, b, c, d, f, g〉1
〈a, b, b, c, e, f, g〉2

L3

〈h, a, h, d, c〉5
〈a, d, a, c, a, c, e, h, h, f, g〉5
〈d, e, h, f, g, e, f, g〉5
〈h, b, b, h, h〉5
〈b, h, d, b, e, h, e, d, f, g〉5
〈a, d, a, d, h〉5
〈b, f, g, d〉5
〈f, g, h, f, g, h, h, h〉5

Fig. 1: Example logs. L1, L2 are structured logs, differing only in number of occurrences of complete traces. L3 is an
unstructured log.

Fig. 2: Petri net for log L1

Fig. 3: Petri net for log L3

Fig. 4: Declare model for log L3

using symbolic dynamics [36]. This problem is highly non-
trivial, especially when only smaller samples are available
and long term correlations are present.

We are interested in applying entropy as a measure with
which to predict the suitability of a log for imperative or
declarative mining; specifically, we expect higher entropy
(less structure, less predictive, more bits required for op-

timal coding) to indicate suitability of declarative models,
and lower entropy that of imperative models. In this setting,
noise is a source of variability, and noisy logs will tend to
have a large degree of entropy. The primary challenge is
to distinguish between unintentional variability (noise) and
intentional variability. One approach could be to first filter
the log for noise using existing techniques, and then mea-
sure its entropy afterwards, accepting the risk of accidentally
removing interesting behaviour from the log. Alternatively
one could assume that the log contains no noise, measure its
entropy, mine the log imperatively, declaratively, or hybridly
based on the measure, and then analyse the resulting model
for unintended flexibility.

In either case, we will insist that our measure of entropy
respects language equivalence.

Definition 4 An entropy measure for logs is a function from
logs to the reals. An entropy measure e respects language
equivalence iff for any two language equivalent logs L,L′,
we have e(L) = e(L′).

We note that any entropy measure can be forced to re-
spect language equivalence simply by flattening the log be-
fore feeding it to the measure:

Lemma 1 Let e be an entropy measure. Then the function
ef (L) = e(flatten(L)) = e ◦ flatten(L) is an entropy mea-
sure that respects language equivalence.

Proof Clearly ef is a function from logs to reals. Now sup-
pose logs L,L′ are language equivalent. Then flatten(L) =
flatten(L′) and it follows that ef (flatten(L)) = ef (flatten(L′)).

The key question in using entropy as a measure of log
complexity is: what is the random variable under consider-
ation in the context of an event log?

3.1 Trace Entropy

One very simple answer to this question is to take the un-
derlying random variable as ranging over entire traces, with
probabilities exactly the frequencies observed in the log.
This idea gives rise to the notion trace entropy.

Entropy as a Measure of Log Variability 5

Definition 5 (Trace entropy) Let L = [σw1
1 , . . . , σwn

n] be
a log. The trace entropy of L, written entropytr(L), is the
entropy of the random variable that ranges over the traces in
L:

entropytr(L) = −
∑
σi∈L

pL(σi) log pL(σi)

We distinguish, here and later, between an entropy mea-
sure defined on the “true” probability distribution p (as in
Definition 5 above) on the one hand, and an estimate p̂ of
that distribution (Definition 6 below) on the other. We re-
strict ourselves to simple likelihood (frequency based) es-
timators, but more sophisticated estimators exist [36]. For
example, Bayesian estimators could incorporate prior prob-
abilities based on domain knowledge.

Definition 6 (Trace likelihood estimator) Let L be a log,
L = [σw1

1 , . . . , σwn
n] be a log. The likelihood estimator for

trace σi, used to compute entropytr(L), is given by

p̂L(σi) =
wi∑m
i=1 wi

Example 3 Even though the traces of L1 and L3 internally
have radically different structure, they have the same num-
ber of occurrences of distinct traces, and so the same trace
entropy:

entropytr(L1) = entropytr(L3) = −8× 5
40 log2

5
40 = 3

Computing the trace entropy of L2, we find

entropytr(L2) = −
(
15
40 log2

15
40 + . . .+ 2

40 log2
2
40

)
= 2.55

This example demonstrates that trace-entropy is likely
not a good measure for determining if a model should be
modelled imperatively or declaratively:L1 andL2 intuitively
should map to the same model, but have distinct trace-entropy.
On the other hand, L3 has much more variable behaviour
than L1, yet has the same trace entropy.

Example 4 The logsL1, L2 of Example 3 are language equiv-
alent. However, they have different trace entropy measures.
It follows that trace entropy does not respect language equiv-
alence.

There is on an intuitive level also a second reason that
trace entropy is unhelpful: it does not consider the behaviour
exhibited within the traces. We saw this in Example 3, where
entropytr(L1) = entropytr(L3); that is, trace entropy can-
not distinguish internal structure of traces. To consider the
full behaviour of a log, we need to determine the entropy on
the level of individual events.

3.2 Prefix Entropy

We look for a suitable notion of random variable that gener-
ates the traces we observe in the log, while at the same time
characterising the internal structure of the individual traces.

Recall that a trace is the execution of a single process
instance, taking the form of a sequence of activity execu-
tions. At each point in a process execution, we have a prefix
of a completed trace. Presumably, the distribution of these
prefixes reflect the structure of the process.

Definition 7 (Prefix entropy) Let L be a log. We write
entropypr(L) for the prefix entropy of L, defined as the en-
tropy of the random variable which ranges over all prefixes
of traces in L.

Formally, we write p(〈e1, . . . , en〉) to denote the prob-
ability that the outcome of the random variable will be the
prefix 〈e1, . . . , en〉. Following directly from Equation (3.1),
prefix entropy is given by

entropypr(L) =

−
∑

〈e1,...,en〉vΣ?

pL(〈e1, . . . , en〉) log pL(〈e1, . . . , en〉)

For n ∈ N.
To estimate the probability distribution on prefixes, we

again use a simple likelihood estimator. That is, for each
prefix 〈e1, . . . , en〉 v σ of a trace σ observed in a log L, we
assign as its probability the frequency of that prefix among
all occurrences of prefixes in L.

Definition 8 (Prefix likelihood estimator) Let L be a log.
The likelihood estimator for prefix 〈e1, . . . , en〉, used to com-
pute entropypr(L), is given by

p̂L(〈e1, . . . , en〉) =

∑
〈e1,...,en〉vσ∈L

1

∑
σ∈L
|σ|

(8.1)

Where the sum in the denominator gives the total number of
prefixes across the log.

Example 5 In the log L2, the prefix 〈a, b, c, d〉 occurs in 20
traces; the log contains a total of 15×7+8×7+. . .+2×7 =

280 prefix occurrences, for a probability of 1/14.

However, this notion of prefix entropy does not respect
language equivalence: logs differing only in the number of
occurrences of a particular trace may also differ in the set of
occurrences of prefixes, we therefore define flattened prefix
entropy as the function composition of first flattening a log
and then determining its prefix entropy.

6 Christoffer Olling Back et al.

L4

〈a, x, y, z〉5
〈a, x, z, y〉5
〈b, x, y, z〉5
〈b, x, z, y〉5
〈c, x, y, z〉5
〈c, x, z, y〉5
〈d, x, y, z〉5
〈d, x, z, y〉5
〈e, x, y, z〉5
〈e, x, z, y〉5

Fig. 5: Log L4 (highly structured).

Fig. 6: Petri net for log L4

Definition 9 (Flattened prefix entropy)

entropyfpr = entropypr ◦ flatten

Example 6 In the log flatten(L2), the prefix 〈a, b, c, d〉 oc-
curs just twice, among a total of only 56 prefix occurrences,
for a probability of 1/26. Computing the flattened prefix en-
tropy of the example logs of Example 3, we find:

entropyfpr(L1) ≈ entropyfpr(L2) ≈ 4.09

entropyfpr(L3) ≈ 5.63

While the notion of flattened prefix entropy may seem
promising, there is one caveat: Because it is based on pre-
fixes, it fails to account for common structure appearing af-
ter distinct prefixes.

Example 7 Consider the logL4 in Figure 5. This log is highly
structured: it always contains exactly 4 activities; the first is
a choice between {a, b, c, d, e}, the second an x, the third
and fourth either x, y or y, x. Figure 6 shows a Petri net ad-
mitting exactly this behaviour. However, this log has a trace
entropy of entropyfpr(L4) = 4.82, higher than the appar-
ently less structured logs L1 and L2.

3.3 Block Entropy

To address this weakness of prefix entropy, we apply ideas
from natural language processing [36], where entropy is stud-
ied in terms of n-length substrings known as “n-grams” (we

will use k instead of n). We consider an individual trace a
“word”, in which case our log is a multiset of such words,
and look at the observed frequencies of arbitrary substrings
within the entire log. That is, rather than looking at the fre-
quencies of prefixes, we look at frequencies of substrings.
We shall see that while computationally more expensive,
this idea alleviates the problems of prefix entropy: observed
structure is weighted equally, regardless of where it occurs
in a trace.

Definition 10 (k-block entropy) Let L be a log. We define
the k-block entropy of L, written entropyblk (L), as the en-
tropy of the random variable which ranges over all k-length
strings in Σ∗.

Formally, we write p(〈s1, . . . , sk〉) to denote the prob-
ability that the outcome of the random variable will be the
substring 〈s1, . . . , sk〉 (in section 3.4 it will become clear
why we do not write 〈e1, . . . , ek〉).

Again, following directly from Equation (3.1), block en-
tropy is given by

entropyblk (L) =

−
∑

〈s1,...,sk〉∈Σ?

pL(〈s1, . . . , sk〉) log pL(〈s1, . . . , sk〉)

For fixed k.
The k-block entropy measures the amount of informa-

tion contained in a block of length k. So, if some activi-
ties always occur in the same order, little new information is
added when they are encountered in that order.

Definition 11 (k-block likelihood estimator) Let L be a
log. The likelihood estimator for blocks of length k, used to
compute entropyblk , is given by

p̂L(〈s1, . . . , sk〉) =



0 if f(L, k) = 0

∑
σ∈L

ns1,...,sk

f(L, k)
otherwise

(11.1)
Where

f(L, k) =
∑
σ∈L

max
(
0, |σ| − k + 1

)
Where ns1,...,sk is the number of times block s1, . . . , sk oc-
curred in a trace, and f(L, k) gives the total number of k-
blocks across the log. The zero condition accounts for all
k-blocks longer than the longest trace.

Definition 12 (Flattened k-block entropy)

entropyfblk = entropyblk ◦ flatten

Entropy as a Measure of Log Variability 7

Example 8 In the flattened version of log L4 in Figure 5,
flatten(L4), the 2-blocks 〈a, x〉, 〈b, x〉, 〈c, x〉, 〈d, x〉 and 〈e, x〉
all occur 2 times while 〈x, y〉, 〈y, x〉, 〈y, z〉 and 〈z, y〉 all oc-
cur 5 times. The log contains a total of 10 × 3 = 30 occur-
rences of 2-blocks, giving the 2-block entropy for flatten(L4):

entropyfblk (L4) =

−
(
5× 2

30 log
2
30 + 4× 5

30 log
4
30

)
≈ 3.03

We now define block entropy for all substrings up to the
length of the longest trace. That is, instead of restricting the
measure to blocks of length k, we include all blocks, from
length 1 up to the length of the longest trace, in one entropy
measure.

Definition 13 (Global block entropy) Let L be a log. The
global block entropy of L, written entropybl(L), is the en-
tropy of the random variable which ranges over all strings in
Σ∗.

Again, following directly from Equation (3.1), global
block entropy is given by

entropybl(L) =

−
∑

〈s1,...,sk〉∈Σ?

pL(〈s1, . . . , sk〉) log pL(〈s1, . . . , sk〉)

For k ∈ N.

Definition 14 (Global block likelihood estimator) Let L
be a log. The likelihood estimator for blocks of length k,
used to compute entropybl(L), is given by

p̂L(〈s1, . . . , sk〉) =

∑
σ∈L

ns1,...,sk

∑
σ∈L

|σ|
(
|σ|+ 1

)
2

(14.1)

Where ns1,...,sk is the number times block 〈s1, . . . , sk〉 oc-
curred in a trace, and the sum in the denominator gives the
total number of k-blocks across the log for k ranging from 1

to the length of the longest trace.

Example 9 A trace of length n contributes 1+2+ · · ·+(n−
1)+n = Σn

1 k = n(n+1)
2 distinct occurrences of substrings:

one of length n; two of length n − 1 starting at indexes 0

and 1, respectively; three of length n−2; and so forth. Sum-
ming up the number of occurrences in each trace in the flat-
tened log, we thus get Σ5

1k = 5·6
2 = 15 in the first trace,

Σ11
1 k = 11·12

2 = 66 in the second, and so on, for a total of
248 distinct occurrences.

Counting the number of occurrences of the specific sub-
string (2-block) 〈a, d〉, we find that it occurs 3 times: once
in the second entry, twice in the sixth. Altogether, the prob-
ability of 〈a, d〉 is 3/248 ∼ 0.012.

As for the prefix and k-block entropy, the global block
entropy does not respect language equivalence, but its flat-
tening does.

Definition 15 The flattened global block entropy entropyfbl

is given by entropyfbl = entropybl ◦ flatten.

Example 10 We give the flattened global block entropy for
the examples L1 through L4.

L1 L2 L3 L4

entropyfbl(−) 5.75 5.75 7.04 4.75

Notice how L3 is still the highest-entropy log, but now L4 is
properly recognised as containing less information than L1

and L2.
We conclude this section by noting that while the global

block entropy looks promising, it is computationally chal-
lenging to apply to large logs. Naively computing the global
block entropy of a log requires, in the worst case, tabulating
the frequencies of all substrings seen in that log. For a log
with n traces, all of length k, the running time is bounded
by O(n × k2). This is ameliorated to some degree by us-
ing efficient data structures such as a suffix trie for counting
k-blocks.

3.4 Stationarity and Ergodicity

In our original definition of entropybl, we made a notational
distinction between the original sequences of events (traces)
〈e1, . . . , en〉 and subsequences of activities within those traces
〈s1, . . . , sn〉, where e denotes a specific event at a specific
position in the trace. This distinction stems from an assump-
tion which underlies most of the entropy estimators we con-
sider: that the underlying process generating traces is sta-
tionary and ergodic.

This notion is clearly illustrated in the case of entropyblk
where, without making these assumptions, we would denote
the probability of seeing a specific sequence of activities
〈s1, . . . , sk〉 from index t to index t+ k in a trace:

pL(〈et+1 = s1, . . . , et+k = sk〉)

That is, the probability that the specific event et+1 was
an instance of activity s1, and so on. In order to drop the
index t and use a “sliding window” approach, counting any
occurrences of 〈s1, . . . , sk〉 as equivalent regardless of po-
sition, we must assume that the position of a k-block in the
trace does not influence which k-block is observed and the
dynamics of the underlying process do not change over time,
i.e. they are stationary. Otherwise we would have to con-
sider an occurrence of the same sequence of activities in the
beginning and end of a trace as instances of two different
outcomes.

8 Christoffer Olling Back et al.

More generally stated, stationarity assumes that the prob-
ability distribution underlying observed outcomes is not a
function of time. In the current context, outcomes are the
observed k-blocks, or individual events in traces for other
metrics we will introduce. This is most likely an incorrect
assumption for business processes since some events are of-
ten associated with the beginning or end of a process, or
that some activity always occurs as, for example, the third
activity if it occurs. We nonetheless make this assumption
under the presumption that much of the structure in activ-
ity sequences will still be captured by k-blocks in a sliding
window.

Ergodicity implies that this probability distribution can
be reconstructed from the observation of a typical sequence
(trace), i.e. that the average properties of the process over
time (within a trace) is equivalent to the average proper-
ties across space (across the traces in a log) which would
seem to run contrary to the fact that process outcomes will
be determined by the needs of a specific case (e.g. a cus-
tomer or patient), unless this variation is to be interpreted
as statistical noise. It is not clear to what degree violation
of these assumptions would actually skew the resulting en-
tropy estimation1. It may be the case that the proposed esti-
mators nonetheless give reasonable indications of the degree
of structure in event logs.

3.5 Block Entropy for Event Logs vs. Natural Language

Beginning with Shannon’s original paper [37], research on
estimating the entropy of natural languages has demonstrated
that studies with human subjects2 consistently result in a
lower entropy estimate than mathematical estimators, sug-
gesting that structural information and long-term correla-
tions are not fully captured [12].

NLP researchers often use text corpora modified by re-
moving punctuation and capitalisation, meaning that sen-
tences are ignored and a single block can span the end of
one sentence and the beginning of another. For event logs
we want to avoid spurious correlations among events at the
end of one trace and the beginning of another, so we keep
traces separate.

3.6 Nearest Neighbours Estimators

The measures discussed so far fail to capture aspects of the
structuredness of the log: prefix and block entropy will be-
come slightly skewed in the case where traces differ by just

1 See section 4 for the theoretical basis of these assumptions, and
an example in which it is impossible to define the entropy of a non-
stationary process.

2 Participants are given prefixes of text and asked to predict the next
letter. The entropy rate (Section 4) is calculated from the proportion of
correct responses.

one “missing” activity since they consider any blocks over-
lapping these activities to be unique, and trace entropy can-
not guarantee language equivalence for flattened logs since
it relies on the distribution of unique traces in the log. Us-
ing edit distance we can obtain a measure which allows us
to compare entire traces while also capturing the internal
structure of traces, being tolerant to minor differences.

The distribution of traces in the metric space defined by
the edit distance determines the entropy of the log: evenly
distributed traces yield a high entropy, whereas similar traces
grouped together in a few clusters yield a low entropy. In
contrast to the trace entropy of Definition 5, we can mean-
ingfully apply this approach to a flattened log.

In previous applications of trace clustering in a BPM
context, authors used a bag-of-activities approach, redefin-
ing traces as vectors of activity counts: each element repre-
senting the occurrences of each activity [13, 21, 42], and us-
ing different vector-based distance metrics such as Minkowski
distance and Jaccard distance. Researchers in natural lan-
guage processing commonly use this approach as well [23].
Others propose clustering traces using more structured ap-
proaches based on outranking relations theory [17] and distance-
graph based representation [22].

Edit distance based clustering was investigated in [9]
where the authors propose an algorithm for automatically
learning operation costs and use agglomerative hierarchical
clustering.

Our approach differs from previous work in two ways.
First, we use nearest neighbour distances to investigate en-
tropy, rather than clustering similar traces in order to mine
these clusters separately; second, the aim of our approach is
to use entropy to choose between mining paradigms: imper-
ative versus declarative.

3.6.1 Edit Distance Between Traces

Levenshtein edit distance is the most well known string edit
distance metric, and is defined by the number of insertions,
deletions and substitutions required to convert one string
into another. Levenshtein distance levx,y(|x|, |y|) between
strings x and y, with non-negative operation costs, fulfils
the axioms of a metric:

non-negativity
levx,y(|x|, |y|) ≥ 0

identity of indiscernibles a string can be transformed into
itself with 0 operations.
levx,y(|x|, |y|) = 0 =⇒ x = y

symmetry the same number of operations is required to
convert string x to y as to convert y to x.
levx,y(|x|, |y|) = levy,x(|y|, |x|) :

triangle inequality
levx,z(|x|, |z|) ≤ levx,y(|x|, |y|) + levy,z(|y|, |z|)

Entropy as a Measure of Log Variability 9

Edit distance allows us to define a metric space on our
log in which the internal structure of the trace, i.e. the order-
ing of events, is captured. We normalise edit distance by the
greatest possible distance between the traces to reflect that a
distance of one operation on two very long strings should be
considered less significant than on very short strings.

Definition 16 (Normalised Levenshtein distance) Let σ
and ς be traces from the same event log. The Levenshtein
distance between these two prefixes is given by

levσ,ς(i, j) =

{
max(i, j) ifmin(i, j) = 0

f(σ, ς) otherwise

Where

f(σ, ς) =


min levσ,ς(i− 1, j) + 1

levσ,ς(i, j − 1) + 1

levσ,ς(i− 1, j − 1) + 1σi 6=ςj

Where 1σi 6=ςj is the indicator function and returns 0 when
σ(i) = ς(j) and 1 otherwise. That is, in the “otherwise”
clause, three types of edits are allowed: insertion, deletion
and substitution, which in this case have the same cost, 1.
The normalised Levenshtein distance is given by

levN (σ, ς) =
levσ,ς(|σ|, |ς|)
max(|σ|, |ς|)

Where max(|σ|, |ς|) is an upper bound on levσ,ς(|σ|, |ς|),
guaranteeing a range of [0, 1] for levN . It is straightforward
to verify that the normalised Levenshtein distance is in fact
a metric.

Example 11 Consider two traces from log L1 in Figure 5:

〈a, b, c, e, f, g, h〉
〈a, b, c, d, f, g〉

Converting the first to the second requires two edits: substi-
tuting d for e and and deleting h. The worst case scenario
is the length of the longest trace, 7, giving a normalised dis-
tance of

levN
(
〈a, b, c, e, f, g, h〉, 〈a, b, c, d, f, g〉

)
= 2

7 ≈ 0.29

One approach to computing entropy based on edit distances
would be to first cluster traces using a clustering algorithm,
and interpreting these clusters as the outcomes of the ran-
dom variable X , then computing Shannon entropy using the
number of traces per cluster as the probability distribution
over X . Aside from adding an extra clustering step, this ap-
proach adds the challenge of choosing an appropriate clus-
tering algorithm and how many clusters into which to parti-
tion the log.

Fortunately, previous research provides nearest neigh-
bour based entropy estimators which estimate entropy di-
rectly from distances, removing the clustering step.

3.6.2 Distance-based Estimators

Nearest neighbour based entropy estimators are a class of
non-parametric estimators widely used in machine learning
for goodness-of-fit testing, parameter estimation and even
for analysing molecular structure [38, 39], which allow for
estimating entropy directly from distances between data points.
The nearest neighbour entropy estimator proposed by Kozachenko
and Leonenko in 1987 [16] considers only the first nearest
neighbour. This measure of entropy is originally formulated
on a vector space, and uses the dimension d of that space as
a parameter. As we are working merely in a metric space,
that d becomes simply a parameter of the measure.

Note that in the following definition ρ (“rho”, not p) sig-
nifies distance and not probability.

Definition 17 (Kozachenko-Leonenko entropy) Let L be
a log, let ρσ denote the distance of trace σ to its nearest
neighbour inL, and let d be positive integer. The Kozachenko-
Leonenko entropy measure is given by

entropyKL(L) =

d

|L|
∑
σ∈L

log ρσ + log
πd/2

Γ (d2 + 1)
+ γ + log(|L| − 1)

(17.1)

Where Γ (n) is the generalisation of (n − 1)! to real (and
complex) numbers, γ ≈ 0.5772 . . . is Euler’s constant, and
d denotes the dimensionality of the underlying metric space.

Definition 18 The flattened Kozachenko-Leonenko entropy
is given by entropyfKL = entropyKL ◦ flatten(L).

Example 12 Consider the traces from logsL1 andL2 in Fig-
ure 1. The nearest neighbour calculation for each trace in the
flattened logs are shown in Table 1. Using these values and
letting d = 1, we have

entropyfKL(L1) =
6

8

(
log

1

8
+ log

π1/2

Γ (32)
+ γ + log(7)

)
+

2

8

(
log

1

7
+ log

π1/2

Γ (32)
+ γ + log(6)

)
≈ 1.17

The nearest neighbour estimator was expanded upon by Singh
et al. in [38] to the kth -nearest neighbour.

Definition 19 (kth-nearest neighbour entropy) Let L be a
log. Let ρσ,k denote the distance of trace σ to its kth nearest
neighbour in L. The kth-nearest neighbour entropy measure
is given by

entropykNN (L) =

d

|L|
∑
σ∈L

log ρσ,k+log
πd/2

Γ (d2 + 1)
+γ−f(k−1)+log(|L|)

10 Christoffer Olling Back et al.

Trace (σ) Nearest Neighbour (ς) lev(|σ|, |ς|) max(|σ|, |ς|) levN (σ, ς)

〈a,b, c,d, f ,g,h〉 〈a, b, b, c, d, f, g, h〉 1 8 1/8 = 0.125
〈a,b, c, e, f ,g,h〉 〈a, b, b, c, e, f, g, h〉 1 8 1/8 = 0.125
〈a,b, c,d, f ,g〉 〈a, b, c, d, f, g, h〉 1 7 1/7 ≈ 0.143
〈a,b, c, e, f ,g〉 〈a, b, c, e, f, g, h〉 1 7 1/7 ≈ 0.143
〈a,b,b, c,d, f ,g,h〉 〈a, b, c, d, f, g, h〉 1 8 1/8 = 0.125
〈a,b,b, c, e, f ,g,h〉 〈a, b, c, e, f, g, h〉 1 8 1/8 = 0.125
〈a,b,b, c,d, f ,g〉 〈a, b, b, c, d, f, g, h〉 1 8 1/8 = 0.125
〈a,b,b, c, e, f ,g〉 〈a, b, b, c, e, f, g, h〉 1 8 1/8 = 0.125

Table 1: Nearest neighbour calculations for flatten(L1) and flatten(L2). It happens to be the case for these log that every
trace in these logs has a nearest neighbour with an unnormalised edit distance of 1.

Where

f(x) =


0 if x = 0
x∑
y=1

1
y if x ≥ 1

Definition 20 (Flattened kth-nearest neighbour entropy)

entropyfkNN = entropykNN ◦ flatten(L)

Note that we used the normalised Levenshtein distance
to define ρσ in entropyKL and entropykNN , but any dis-
tance metric fulfilling the axioms in 3.6.1 can be used.

While edit distance allows us to capture local structural
differences in traces, allowing us to bin traces together which
differ by only a few events, it may fail to capture important
similarities among traces. For example, the traces 〈a, b〉 and
〈a, b, a, b, a, b〉 will be heavily penalised for being of dif-
ferent length, even though the latter is clearly a repetition
of the former. In the next section we discuss measures like
Lempel-Ziv which are able to capture this type of structure.

4 Entropy Rate of Stochastic Processes

Up to this point we have explored ways to interpret process
logs as the outcome of some stochastic variable X and find-
ing the entropy of this variable. We shall see in Section 5
that logs with longer traces and more activities tend to re-
sult in higher entropy measures. It is questionable however
whether a larger log by definition is always better suited to
declarative modelling.

A more nuanced interpretation of entropy is to consider
each individual event, rather than the trace as a whole, as
the outcome of a separate variable, generated by a stochas-
tic process. This approach is invariant to the number of ac-
tivities and trace lengths and should better capture what we
are interested in: the degree of structure in the underlying
process. In the literature, this is referred to as the entropy
rate of a process: the increase in entropy upon considering
an additional outcome of the process [43].

We present three estimators of entropy rate in Sections
4.1 and 4.2, but first we will formally define the entropy rate
for a process for which the probability distribution is known.

We cover two alternative definitions of entropy rate, which
turn out to be equivalent in the limit for stationary processes.
First, we will need the definitions of joint entropy and con-
ditional entropy. See [27] or [43] for details.

Lemma 2 (Joint entropy) Let e1, . . . , en be discrete ran-
dom variables. The joint entropy is the Shannon entropy ex-
tended to more than one variable. In the present context, the
outcomes under consideration are activities s ∈ Σ:

H(e1, . . . , en) = −
∑
s1∈Σ

· · ·
∑
sn∈Σ

pn log pn

Where
pn = p(e1 = s1, . . . , en = sn)

It is the expected value of the information content of the vari-
ables:

H(e1, . . . , en) = E [log p(s1, . . . , sn)]

Note that this definition is equivalent to our initial defi-
nition of Shannon entropy (3.1), if the outcome of variables
e1, . . . , en are instead interpreted as a single vector valued
variable.

Example 13 Consider L4 from Figure 5 where

Σ = {a, b, c, d, e, x, y, z}.

If we assume that the log is exactly representative of the
outcomes of e1, e2, e3 and e4, then we have the following
marginal probabilities for the individual events,

p(e1 = a) = 1 p(e2 = x) = 1

p(e1 = b) = 1 p(e3 = y) = 1
2

p(e1 = c) = 1 p(e3 = z) = 1
2

p(e1 = d) = 1 p(e4 = y) = 1
2

p(e1 = e) = 1
5 p(e4 = z) = 1

2

(20.1)

Entropy as a Measure of Log Variability 11

The probability for all other outcomes (e.g. e1 = x, e2 =

a, etc.) is 0. The joint entropy is given by

H(e1, e2, e3, e4) =

−
∑
s1∈Σ

∑
s2∈Σ

∑
s3∈Σ

∑
s4∈Σ

p(s1, s2, s3, s4) log p(s1, s2, s3, s4)

= −10×
(
1
5 × 1× 1

2 ×
1
2

)
log
(
1
5 × 1× 1

2 ×
1
2

)
≈ 2.16

Lemma 3 (Conditional entropy) Let e1, . . . , en+1 be dis-
crete random variables. The conditional entropy of en+1

given en, . . . , e1 is the amount of uncertainty regarding the
outcome of en+1 once en, . . . , e1 have been observed:

H(en+1|en, . . . , e1) = −
∑
s1∈Σ

· · ·
∑

sn+1∈Σ
pn log pn

Where
pn = p(e1 = s1, . . . , en+1 = sn+1)

It is the expected value of the conditional probability of en+1

given en, . . . , e1:

H(en+1|en, . . . , e1) = E [log p(sn+1|sn, . . . , s1)]

By simple rules of probability and logarithms, we can show
that conditional entropy is equivalent to the difference be-
tween the joint entropy of en+1, . . . , e1 and en, . . . , e1:

H(en+1|en, . . . , e1) =

−
∑
s1

· · ·
∑
sn+1

p(s1, . . . , sn+1) log
p(sn, . . . , s1|sn+1)p(sn+1)

p(sn, . . . , s1)

= −
∑
s1

· · ·
∑
sn+1

p(s1, . . . , sn+1)

(
log p(sn+1, . . . , s1
− log p(sn, . . . , s1)

)
= H(e1, . . . , en+1)

+
∑
s1

· · ·
∑
sn

p(sn, . . . , s1) log p(sn, . . . , s1)

= H(e1, . . . , en+1)−H(e1, . . . , en)

Example 14 For brevity, consider a new log:

{〈a, b, c〉, 〈a, b, d〉, 〈a, c, c〉}

. We will compute the conditional entropy of e3, given e2
and e1:

H(e3|e2, e1) =−
∑
s1∈Σ

∑
s2∈Σ

∑
s3∈Σ

p(s1, s2, s3) log p(s3|s2, s1)

=− p(a, b, c) log(c|b, a)
− p(a, b, d) log p(d|b, a)
− p(a, c, c) log p(c|c, a)

=− 1
3 log

1
2 −

1
3 log

1
2 −

1
3 log 1 = 2

3

Lemma 4 (Per symbol entropy rate) Let e1, . . . , en be a
sequence of n variables, representing the outcomes of a stochas-
tic process, then the per symbol entropy rate of the pro-
cess, denoted H(E) or h, represents how the joint entropy
H(e1, . . . , en) grows with the length n of the sequence:

h = H(E) = lim
n→∞

1

n
H(e1, . . . , en) (20.2)

In the special case in which e1, . . . , en are independent
and identically distributed (i.i.d.), we have

H(E) = lim
n→∞

H(e1, . . . , en))

n
= lim
n→∞

nH(e1)

n
= H(e1)

where H(e1, . . . , en) = nH(e1) for i.i.d. variables follows
from Shannon’s source coding theorem and the asymptotic
equipartition principle [27]. Since event logs were gener-
ated by some structured process, we cannot assume inde-
pendence between variables e1, . . . , en. However, we must
assume stationarity, i.e. that the statistical properties of the
process do not change over time, in order to be able to use
block-based entropy rate estimators.

The reason for this is illustrated by the case in which
we have independent, but not identically distributed random
variables: if p(ei = s) is allowed to be a function of time
(i.e. the index i). From the definition of joint entropy and
independence we have

H(e1, . . . , en) =

n∑
i=1

H(ei)

In this case, there exists a sequence of probability distri-
butions across e1, . . . , en such that

H(E) = lim
n→∞

1

n

∑
H(ei)

does not exist3. In such a process, H(E) is undefined [43].
We now define an alternative interpretation of entropy

rate, which is equivalent to per-symbol entropy rate under
the assumption of stationarity.

Lemma 5 (Conditional entropy rate) Let e1, . . . , en be a
sequence of n variables, representing the outcomes of a stochas-
tic process, then the conditional entropy rate of the process,
denoted H ′(E) or h′, represents the conditional entropy of
the most recently observed variable given the past, in the
limit:

h′ = H ′(E) = lim
n→∞

H(en+1|en, . . . , e1) (20.3)

3 For example, if the probability of the outcome of p(ei = x) is a
function of the index i, then a probability distribution exists such that
the running average of H(ei) oscillates between 0 and 1.

12 Christoffer Olling Back et al.

Theorem 1 For stationary stochastic processes, limits inH(E)
and H ′(E) exist and

H(E) = H ′(E)

For a proof, see [43].

The entropy rate h represents a lower bound on the com-
pressibility of the sequence of outcomes resulting from the
underlying process, in contrast to the compressibility of the
outcomes of just one random variable represented by en-
tropy H (i.e. the compressibility of this variable’s probabil-
ity distribution). This makes entropy rate a more promising
guide for selecting a process mining approach.

4.1 Block-based Estimators

We now have a formal definition of the entropy rate of a
process, but they are defined as limits where the number of
observed events approaches infinity. In reality, we work with
event logs of finite length, and must rely on estimates given
the available data. From the definitions of per-symbol and
conditional entropy rates, two estimators based on block en-
tropy follow. Namely from

h = lim
k→∞

hk = lim
k→∞

entropyblk
k

= lim
k→∞

entropyblk+1 − entropyblk

we obtain the following two entropy rate estimators. Each
relies on making a particular choice of k, since we cannot
in practice let k tend towards infinity; we will see how to
choose a value for k in the next subsection (see also [25]).

Definition 21 (Ratio-based k-block entropy rate) Let L
be a log. The ratio-based k-block entropy rate estimator
is given by the ratio of the k-block entropy to the block’s
length k. The flattened k-block estimator uses the flattened
k-block estimator:

raterk(L) =
entropyblk (L)

k
ratefrk (L) =

entropyfblk (L)

k
(21.1)

Example 15 Consider log L4 in Figure 5. The flattened 2-
block entropy of the log is approximately 3.03, giving

ratefr2 (L4) =
3.03
2 ≈ 1.51

Definition 22 (Difference-based k-block entropy rate) Let
L be a log. The difference-based k-block entropy rate esti-
mator is based on definition (20.3) of entropy rate and is
given by the difference between the k+1-block entropy and
the k block entropy:

ratedk(L) = entropyblk+1(L)− entropyblk (L)

ratefdk (L) = entropyfblk+1(L)− entropyfblk (L)

(22.1)

Example 16 Consider logs L1 and L3 in Figure 1. The k-
block entropy and corresponding block-based entropy rates
for 1 ≤ k ≤ 6 are shown Table 2.

As we see blocks of increasing length, the estimators ap-
proach the true entropy rate of the underlying process from
above. While they are equal in the limit, at any k < ∞,
raterk ≥ ratedk ≥ h [25].

However, block-based estimators break down at longer
block lengths due to the lack of sufficient samples for the
frequencies to serve as a valid empirical estimate of the true
probability p(〈s1, . . . , sk〉) [25, 36]. This is seen clearly in
Figure 7 by the fact that as k grows the entropy rate falls to
zero and even goes negative. We now discuss methods for
determining a limit to block length that guarantees a suffi-
cient number of samples.

4.1.1 Sufficient Statistics

Entropy rate is formally defined for a sequence as its length
approaches infinity, but in practice we must choose a finite
value of k for the estimators, (21.1), (22.1). We cannot sim-
ply choose the k corresponding to the longest trace due to
under-sampling: there are not enough examples of k-blocks
of this length and all but the longest traces will be omitted.
We must therefore find a strategy for choosing a k which is
small enough that a sufficient number of k-blocks are ob-
served in the log, yet large enough that the k-blocks reach a
length such that the entropy estimate begins to converge to
the “true” entropy rate as defined in (20.2) and (20.3). We
present five methods for choosing k based on previous re-
search on estimating entropy of very short sequences, draw-
ing heavily upon [25], where detailed derivations of the fol-
lowing constraints can be found.

Interestingly, these constraints in some cases rely on know-
ing upfront the “true” entropy, which one obviously does
not; in practice, one implements these constraints in an iter-
ative fashion, using in each round the previous estimate of
entropy as the “true” entropy.

In a scenario of adequate sampling, the length of k-blocks
is bounded above by the following function of K, the total
length of a sequence, h the entropy rate, and alphabet size
|Σ|:

k <
logK

h
if h→ O(1) (22.2)

k <
Kh

log |Σ|
if h→ 0 (22.3)

Where O(1) denotes some nonzero constant, meaning
that the bound depends on whether the underlying process
is fully predictable in the limit.

For “short” sequences (length of less than about 1200,
according to [25], as will be common in a BPM context

Entropy as a Measure of Log Variability 13

Logs k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

entropyfbl L1,2 2.9 3.09 3.32 3.38 3.25 3.0
L3 2.85 4.5 5.1 5.0 4.86 4.09

ratefd
k

L1,2 2.9 0.19 0.24 0.05 -0.12 -0.25
L3 2.85 1.65 0.6 -0.1 -0.42 -0.5

ratefr
k

L1,2 2.9 1.54 1.11 0.84 0.65 0.5
L3 2.85 2.25 1.7 1.25 0.92 0.68

Table 2: Flattened block-based entropy rate.

where sequences are event traces)4 we are in a scenario of
under-sampling meaning that the bound in (22.2), (22.3) will
be too lenient. To determine stricter bounds on k, the authors
of (see [25]) draw upon research showing that block based
entropy estimates tend to break down when |Σ|k ≈ K [36]
and the fact that a sequence of length K contains K

k non-
overlapping k-blocks to derive the constraint

K ≥ k|Σ|k (22.4)

This formulation assumes sequences of i.i.d. variables,
i.e. that correlations between k-blocks result exclusively from
their overlap. Dropping this assumption leads to a more strin-
gent constraint based on an adjusted sequence length scaled
by the entropy rate, which serves as a measure of correlation
not due to block overlap. The upper bound on entropy rate
is given by log |Σ|, which represents a scenario in which ev-
ery outcome in Σ is equally probable, regardless of the pre-
ceding observations, i.e. p(sn|sn−1, . . . , s1) = p(sn). This
leads to a normalised entropy rate h

log |Σ| , which can be used
to define an “effective” sequence length

Keff ≈ K
h

log |Σ|

Substituting K with Keff in (22.4), we have the new con-
straint

Kh ≥ k|Σ|k log |Σ| (22.5)

However, taking advantage of the asymptotic equipar-
tition property we can relax this constraint, diminishing the
influence of the size of the alphabet. Specifically, for discrete
time, finite valued, stationary, ergodic sources the Shannon-
McMillan-Breiman theorem, “states that the number of k-
blocks of non-negligible probability that actually contribute
to entropy is not |Σ|k, but 2kh” (see [25] and [43]), giving

Kh > k2kh log |Σ| (22.6)

Using these constraints, we can find the highest value
of k such that the estimators raterk and ratedk remain valid,

4 In the literature on entropy estimation, sequences of this length are
considered relatively short since the data under consideration are often
large text corpora or outputs from simulations of dynamic systems.

i.e. that enough examples of blocks of length k have been
observed to consider their frequencies (11.1) as a reasonable
estimate of the true underlying probability distribution.

We stress that these constraints are formally defined for
single sequences of length K whereas we are considering
sets of sequences, which affects the number of k-blocks we
will observe, depending on the distribution of trace lengths
in the log: some logs may consist almost entirely of very
short traces with only a few long traces, in which case longer
k-blocks will still be under-sampled. In our implementation
we have used the length of the longest trace as K. Our cur-
rent results use the constraints defined for single sequences;
leaving the generalisation to future work.

In summary, to apply either of the entropy estimators of
Definition 21.1 or 22.1, first choose one of the constraints
(22.2)–(22.6); then apply the estimator at the maximum k

which satisfies that constraint.

Example 17 Consider log L3 from Figure 1. We will com-
pute ratedk up to the highest k which satisfies constraint (22.5).
The longest trace is 〈a, d, a, c, a, c, e, h, h, f, g〉with a length
of 11. The alphabet has size∣∣Σ∣∣ = ∣∣{a, b, c, d, e, f, g, h}∣∣ = 8.

The highest value for k which satisfies constraint (22.5) is
just 1, this gives ratefd1 = entropyfbl2 − entropyfbl1 = 4.5−
2.85 = 1.65.

k ratefdk Kĥ ≥ k|Σ|k log |Σ|

1 2.85 11× 2.85 ≥ 1× 81 log 8 ⇐⇒ 31.35 ≥ 24

2 1.65 11× 1.65 6≥ 2× 82 log 8 ⇐⇒ 18.15 6≥ 384

4.2 Lempel-Ziv Estimators

Lempel-Ziv entropy estimators are based on the properties
of the sequence compression algorithms introduced by Abra-
ham Lempel and Jacob Ziv in two papers from 1977 and
1978 [45,46]. These algorithms can be proven to be asymp-
totically optimal: in the limit they will converge to the en-
tropy rate h when compressing a sequence resulting from a
stationary, ergodic source [43].

14 Christoffer Olling Back et al.

Both versions work by parsing a sequence into unique
words (blocks), and are universal coding schemes [43], mean-
ing that they do not rely on the probability distribution of the
underlying source. The cost of universality is a higher com-
plexity of the encoder and decoder.

We will use the 1978 version of the compression scheme
which moves through a sequence 〈e1, . . . , en〉, parsing it
into the shortest unique word not yet encountered.

Example 18 Consider the last trace from our running exam-
ple log L3 in Figure 1, (a start symbol $ is included for in-
dexing purposes):

〈$, f, g, h, f, g, h, h, h〉

The first, shortest word encountered is f , the second g,
and the third h. The fourth element f has already been en-
countered, so we append the fifth element to the word to
arrive at a new word fg. The sixth element h has been seen,
so the seventh is appended giving hh. The final element h
has already been seen, so no new words are added to the
dictionary. This results in the following dictionary in which
each word is represented by a tuple containing the index of
a prevously encountered word, and a character to append,
creating a new word:

〈$, f, g, h, fg, hh〉 =
〈
〈0, f〉, 〈0, g〉, 〈0, h〉, 〈1, g〉, 〈3, h〉

〉
Definition 23 (Lempel-Ziv entropy rate) Let L be a log.
LetDL be the dictionary of subsequences resulting from the
parsing of all traces in L using the Lempel-Ziv compression
scheme. Then the Lempel-Ziv estimate of the entropy rate
of the process generating L is given by

rateLZ(L) =
|DL| log

∑
σ∈L |σ|∑

σ∈L |σ|

Definition 24 (F) lattened Lempel-Ziv entropy rate]

ratefLZ = rateLZ ◦ flatten(L)

5 Implementation and Experiments

We present in this section the results of empirically measur-
ing entropy as defined by the various measures in the pre-
ceding sections on both synthetic and real-life logs.

5.1 Implementation

To test the various measures we implemented a command
line utility for computing the measures introduced in the pre-
ceding sections. Using this implementation, we report here
the values of the discussed measures.

The implementation is not entirely trivial: in particular,
use of both prefix- and suffix tree data structures was nec-
essary to compute the global block entropy in reasonable
time on available memory. We note that the Hospital Log
and BPI Challenge 2017 were both particularly challeng-
ing in this respect. We also used an iterative version of the
Levenshtein distance algorithm with a number of heuristics
(checking lower bounds and common pre- and suffixes) to
avoid unnecessary calculations. While this drastically im-
proves performance, this estimator clearly stands out as the
most computationally expensive estimator.

The implementation, along with our results in machine
readable format, is available at [5].

5.2 Real-life Logs

We have evaluated a selection of real-life logs available at [1].
We summarise the logs in Table 3.

For those logs which include distinguishing lifecycle tran-
sitions for activities such as “start”, “pending” or “com-
plete”, we include both the log in which these are included
(denoted with an asterisk) and those in which they are ig-
nored. When lifecycle transitions are included, activities like
“a + start” and “a + pending” are considered unique events.
This is arguably the only defensible approach since lifecy-
cle transitions are included to make a distinction between
activities and there is no reason to throw this information
away when estimating entropy. However, in the interest of
completeness, we report on both versions.

There is not yet a clear agreement in the literature on
which of these logs are better suited for imperative or declar-
ative mining. However, the BPI Challenge 2012 log has been
used as a use case for hybrid mining algorithms [28], show-
ing a strong advantage over purely imperative miners. We
also note that both the Sepsis cases and Hospital log origi-
nate from highly flexible and knowledge-intensive processes
within a Dutch hospital. A recent investigation involving the
BPI Challenge 2013 (incidents) log seemed to indicate that
an imperative approach may be the more successful, but
draws no concrete conclusions [35]. For every log of Ta-
ble 3, we report measurements of entropy (Section 3) in Ta-
ble 4, and measures of entropy rate (Section 4.1) in Table 5.
We also present graphs of the block-based entropy rate as
a function of block length(k) for two logs, to illustrate how
the estimators converge differently.

5.3 Artificial Logs

In order to further illuminate the potential capability of en-
tropy measures to distinguish declarative from imperative
logs, we apply in this section the measures to a selection
of artificially generated logs. We evaluate the measures on

Entropy as a Measure of Log Variability 15

Log Act. Traces Events Comment

DECLARATIVE INDICATIONS

Hospital Event Log 624 1143 150291 Knowledge-intensive process
Road Traffic Fine 11 150370 561470 Declarative indications in [35]
Sepsis Cases 16 1050 15214 Highly flexible, knowledge-intensive pro-

cess, declarative indications in [31, 35]
L3 8 40 280 Declarative by construction

HYBRID INDICATIONS

BPI Challenge 2012 24 13087 262200 Loan application process, successfully
BPI Challenge 2012* 36 13087 262200 used for hybrid mining [28]

IMPERATIVE INDICATIONS

BPI Challenge 2013 4 7554 65533 Imperative indications in [35]
BPI Challenge 2013* 13 7554 65533 ”
NASA CEV split* 94 2566 73638 Imperative miners return succinct models
L1 8 40 280 Imperative by construction
L2 8 40 280 Language-equivalent with L1

L4 8 50 280 Imperative by construction

NO INDICATIONS

BPI Challenge 2017 26 31509 1202267
BPI Challenge 2017* 66 31509 1202267
WABO - Receipt 27 1434 8577
Hospital Billing 18 100000 451359

Table 3: Overview of real-life logs measured as well as running examples. All logs but L1 through L4 from [1]. Logs marked
with an asterisk(*) include the lifecycle transition of events.

en
tr
op
y
tr

en
tr
op
y
f
p
r

en
tr
op
y
f
b
l

en
tr
op
y
f
K

L

entropyfkNN

Log k=1 k=2 k=3 k=4

DECLARATIVE INDICATIONS

Hospital Event Log 9.63 16.79 24.71 7.13 7.13 6.22 5.77 5.47
Road Traffic Fine 2.48 6.51 8.73 4.64 4.64 3.76 3.4 3.18
Sepsis Cases 9.33 10.6 14.66 6.16 6.16 5.35 4.96 4.7
L3 3.0 5.63 7.04 2.78 1.3 1.99 1.56 1.27

HYBRID INDICATIONS

BPI Challenge 2012 7.75 12.53 15.99 7.28 7.28 6.47 6.07 5.81
BPI Challenge 2012* 7.75 12.54 16.28 7.34 7.34 6.51 6.11 5.85

IMPERATIVE INDICATIONS

BPI Challenge 2013 6.67 11.32 12.23 6.17 6.17 5.28 4.86 4.58
BPI Challenge 2013* 7.48 11.81 14.01 6.95 6.95 6.07 5.64 5.36
NASA CEV split* 11.27 10.12 14.81 6.84 6.84 5.97 5.51 5.27
L1 3.0 4.09 5.75 1.17 1.3 0.37 -0.09 0.13
L2 2.55 4.09 5.75 1.17 1.3 0.37 -0.09 0.13
L4 3.32 4.82 4.75 2.08 2.19 1.19 0.69 0.35

NO INDICATIONS

BPI Challenge 2017 11.99 14.42 17.45 8.16 8.16 7.38 7.01 6.76
BPI Challenge 2017* 12.23 14.63 18.24 8.53 8.53 7.71 7.31 7.05
CoSeLog - Receipt 3.21 7.72 10.05 4.43 4.44 3.63 3.26 3.02
Hospital Billing 3.17 9.43 10.49 6.04 6.04 5.22 4.87 4.64

Table 4: Estimates of log entropy (H). Logs marked with an asterisk(*) distinguish events by lifecycle transition.

16 Christoffer Olling Back et al.

L
og

ra
te

f
d

k
+

1
=

en
tro

p
y
f
b
l

k
+

1
−

en
tro

p
y
f
b
l

k
k
+

1

ra
te

f
L
Z

(22.2)
(22.3)

(22.4)
(22.5)

(22.6)
(22.2)

(22.3)
(22.4)

(22.5)
(22.6)

|Σ
|

K

DECLARATIVE
INDICATIONS

H
ospitalE

ventL
og

2.89
≈

0
0.08

2.2
2.2

1.09
33

18
2

2
5

624
1814

R
oad

Traffic
Fine

1.52
-0.1

0.46
1.55

1.55
1.55

7
5

2
2

2
11

20
Sepsis

C
ases

1.89
-0.03

0.22
1.88

1.88
1.74

12
10

2
2

3
16

185
L

3
2.9

-0.1
0.6

1.65
1.65

2.85
4

3
2

2
1

8
11

HYBRID
INDIC.

B
PIC

hallenge
2012

0.96
-0.01

0.37
1.33

1.33
0.46

38
14

2
2

5
24

175
B

PIC
hallenge

2012*
0.98

-0.01
0.35

1.02
1.02

0.41
38

12
2

2
5

36
175

IMPERATIVE
INDICATIONS

B
PIC

hallenge
2013

1.16
0.78

0.18
0.88

0.88
0.87

9
17

3
3

5
4

123
B

PIC
hallenge

2013*
1.71

1.18
0.33

1.57
1.57

1.49
6

11
2

2
3

13
123

N
A

SA
C

E
V

split*
0.84

6.1
0.5

6.1
6.1

6.1
1

4
1

1
1

94
50

L
1

2.18
-0.12

0.19
0.19

2.9
2.9

5
2

2
1

1
8

8
L

2
2.07

-0.12
0.19

0.19
2.9

2.9
5

2
2

1
1

8
8

L
4

2.13
2.58

0.45
2.58

2.58
2.58

1
2

1
1

1
8

4

NO
INDICATIONS

B
PIC

hallenge
2017

0.89
≈

0
0.39

1.33
1.33

0.52
42

15
2

2
5

26
180

B
PIC

hallenge
2017*

0.97
-0.01

0.42
0.9

0.9
0.61

40
13

2
2

4
66

180
W

A
B

O
-R

eceipt
2.34

-0.17
0.48

3.77
3.77

1.59
8

5
1

1
2

27
25

H
ospitalB

illing
1.58

-0.11
0.06

1.42
1.42

0.93
10

9
2

2
4

18
217

ra
te

f
r

k
=

en
tro

p
y
f
b
l

k
/
k

k

DECLARATIVE
INDICATIONS

H
ospitalE

ventL
og

”
3.3

0.29
5.92

5.92
4.06

3
57

1
1

2
”

”
R

oad
Traffic

Fine
”

3.26
1.2

3.26
3.26

3.26
1

6
1

1
1

”
”

Sepsis
C

ases
”

2.28
0.49

3.22
3.22

2.55
3

22
1

1
2

”
”

L
3

”
2.85

1.25
2.85

2.85
2.85

1
4

1
1

1
”

”

HYBRID
INDIC.

B
PIC

hallenge
2012

”
1.05

0.58
3.56

3.56
2.45

7
21

1
1

2
”

”
B

PIC
hallenge

2012*
”

1.22
0.61

4.56
4.56

4.56
6

20
1

1
1

”
”

IMPERATIVE
INDICATIONS

B
PIC

hallenge
2013

”
0.94

0.44
1.11

1.11
1.03

7
26

2
2

3
”

”
B

PIC
hallenge

2013*
”

1.71
0.62

2.42
2.42

1.99
4

20
1

1
2

”
”

N
A

SA
C

E
V

split*
”

6.1
1.22

6.1
6.1

6.1
1

8
1

1
1

”
”

L
1

”
2.9

1.54
2.9

2.9
2.9

1
2

1
1

1
”

”
L

2
”

2.9
1.54

2.9
2.9

2.9
1

2
1

1
1

”
”

L
4

”
2.58

1.51
2.58

2.58
2.58

1
2

1
1

1
”

”

NO
INDICATIONS

B
PIC

hallenge
2017

”
1.41

0.61
3.66

3.66
2.5

5
23

1
1

2
”

”
B

PIC
hallenge

2017*
”

1.86
0.71

5.27
5.27

5.27
4

20
1

1
1

”
”

W
A

B
O

-R
eceipt

”
3.77

1.38
3.77

3.77
3.77

1
6

1
1

1
”

”
H

ospitalB
illing

”
1.52

0.35
3.44

3.44
2.43

5
16

1
1

2
”

”

Table 5: Estimates of entropy rate, h, according to the Lempel Ziv estimator, the difference-based of k-block estimator,
and the ratio-based k-block entropy estimator. For the latter two, block length k is determined according to five different
constraints for identifying the crossover from “good statistics” to “poor statistics” [25] on short sequences. K denotes the
length of the longest trace and |Σ| the size of the alphabet, i.e. number of activities. Logs marked with an asterisk(*)
distinguish events by lifecycle transition.

Entropy as a Measure of Log Variability 17

−1

0

1

2

3

4

5

0 50 100 150 200

0

1

2

3

4

5

0 2 4 6 8 10 12 14 16 18 20

(a) (b)

E
nt

ro
py

R
at

e

Block Size (k)

BPI 2012

ratefd
k

ratefr
k

E
nt

ro
py

R
at

e

Block Size (k)

BPI 2012

ratefd
k

ratefr
k

−1

0

1

2

3

4

5

0 50 100 150 200

0

1

2

3

4

5

0 2 4 6 8 10 12 14 16 18 20

(a) (b)

E
nt

ro
py

R
at

e

Block Size (k)

BPI 2013

ratefd
k

ratefr
k

E
nt

ro
py

R
at

e

Block Size (k)

BPI 2013

ratefd
k

ratefr
k

Fig. 7: Block-based estimators of entropy rate (h), as a function of block size (k) for selected logs. The cutoff constraints,
Kh ≥ k|Σ|k log |Σ| and k < logK

h , are labelled by (a) and (b), respectively. See (22.5) and (22.2)

18 Christoffer Olling Back et al.

Log
Entropy Entropy Rate

ratefd
k ratefr

k

entropyfbl entropyfKL rateLZ (22.5) (22.5)
D

E
C

L
A

R
A

T
IV

E
IN

D
IC

A
T

IO
N

S Hospital Event Log 24.71 7.25 2.89 2.2 5.92
Road Traffic Fine 8.73 3.59 1.52 1.55 3.26
Sepsis Cases 14.65 5.04 1.89 1.88 3.22
L3 7.04 2.42 2.9 1.65 2.85

H
Y

B
R

ID
IN

D
IC

. BPI Challenge 2012 15.99 7.19 0.96 1.33 3.56
BPI Challenge 2012* 16.28 7.19 0.98 1.02 4.56

IM
PE

R
A

T
IV

E
IN

D
IC

A
T

IO
N

S

BPI Challenge 2013 12.22 5.34 1.16 0.88 1.11
BPI Challenge 2013* 14.01 5.51 1.71 1.56 2.42
NASA CEV split* 14.81 4.9 0.84 6.1 6.1
L1 5.75 1.15 2.18 2.9 2.9
L2 5.75 1.15 2.07 2.9 2.9
L4 4.75 1.17 2.13 2.58 2.58

N
O

IN
D

IC
A

T
IO

N
S BPI Challenge 2017 17.45 7.4 0.89 1.33 3.66

BPI Challenge 2017* 18.24 7.57 0.97 0.9 5.27
WABO - Receipt 10.05 3.74 2.34 3.77 3.77
Hospital Billing 10.49 5.16 1.58 1.42 3.44

Table 6: Most promising measures across real-life logs and running examples. Logs with declarative, hybrid, and imperative
indications should have the highest, middle and lowest values, respectively. No estimators are able to separate logs exactly
as desired. Logs marked with an asterisk(*) distinguish events by lifecycle transition.

three sets of logs: one generated from Petri nets with vary-
ing degrees of noise, one generated from Declare models
with varying degrees of restrictiveness, and a log with vary-
ing degrees of concurrency.

5.3.1 Petri net based logs with noise

To evaluate the effect of noise and infrequent behaviour in
imperative processes on entropy estimates, we use the set of
120 event logs from [44]. These logs, each containing 1000
traces, are generated from four typical imperative process
patterns which can cause difficulty for process mining al-
gorithms. Then, five different forms of noise are introduced
in the form of an activity which is added (1) infrequently
or very infrequently and (2) locally (in one position), semi-
locally (in one of two positions) or globally (anywhere in
the process). Along with the noise-free log, this results in
six sets of five logs each for each of the four process pat-
terns (the semi-local/very infrequent noise combination is
omitted in the original logs).

The four process patterns employed are as follows:

Parallel Five activities which can occur once, in
any order.

Skip Three activities, one of which may be skipped.
Duplicates A sequence of activities with one activity

occurring twice.
Non-free Choice A choice at the end of the process de-

pends on an earlier choice.

Observations. We report the results of experiments in Fig-
ures 8 and 9.

First, we note that entropy measures tend to agree on the
relative ordering of the four logs, with the exception of Skip
and Duplicates. Entropy rate measures, on the other hand,
tend to rank Non-free Choice as having the highest entropy
rather than Parallel.

Most entropy measures are affected by noise, with the
exception of nearest-neighbour approaches on the Parallel
log. Entropy rate measures perform much more poorly when
faced with noise. We note in particular that entropy mea-
sures generally preserve the relative ordering of the four
logs, whereas entropy rate measures exhibit much more “crossover”:
the addition of noise switches the relative ranking of two or
more of the logs.

5.3.2 Declare based logs

We evaluate the output of entropy estimators on declara-
tively generated logs in terms of model restrictiveness versus
expressiveness. Specifically, we measure not only the effect
of the number of constraints, but also types of constraints,
as well as number of activities. Each log consists of 1000
traces with lengths between 5 and 10 events, in order to en-
sure a comparability with the imperatively generated logs,
which are of similar length.

Logs were generated from Declare models using the ar-
tificial log generator described in [18]. Insofar as possible,
models were built by varying along one dimension at a time,

Entropy as a Measure of Log Variability 19

Artificial Logs - Imperative with Noise

Parallel
Skip

Duplicates
Non-free Choice

−2

0

2

4

6

8

Global Inf. Glob. LocalSemi-loc. Inf. Loc. None

en
tr
op
yt
r

NOISE

−2

0

2

4

6

8

Global Inf. Glob. LocalSemi-loc. Inf. Loc. None

en
tr
op
yf
p
r

NOISE

−2

0

2

4

6

8

Global Inf. Glob. LocalSemi-loc. Inf. Loc. None

en
tr
op
yf
bl

NOISE

−2

0

2

4

6

8

Global Inf. Glob. LocalSemi-loc. Inf. Loc. None

en
tr
op
yf
K
L

NOISE

−2

0

2

4

6

8

Global Inf. Glob. LocalSemi-loc. Inf. Loc. Noneen
tr
op
yf
k
N
N

(k
=

1)

NOISE

−2

0

2

4

6

8

Global Inf. Glob. LocalSemi-loc. Inf. Loc. Noneen
tr
op
yf
k
N
N

(k
=

2)

NOISE

−2

0

2

4

6

8

Global Inf. Glob. LocalSemi-loc. Inf. Loc. Noneen
tr
op
yf
k
N
N

(k
=

3)

NOISE

−2

0

2

4

6

8

Global Inf. Glob. LocalSemi-loc. Inf. Loc. Noneen
tr
op
yf
k
N
N

(k
=

4)

NOISE

−2

−1

0

1

2

3

4

Global Inf. Glob. LocalSemi-loc. Inf. Loc. None

ra
te
f
L
Z

NOISE

Fig. 8: Estimates of entropy (H) and entropy rate (h) for the “Testing Representational Bias” set of artificial logs. Logs have
different degrees and types of noise: infrequent, very infrequent (“inf.”); and global, semi-local and local.

20 Christoffer Olling Back et al.

Artificial Logs - Imperative with Noise

−2

−1

0

1

2

3

4

Global Inf. Glob. LocalSemi-loc. Inf. Loc. None

ra
te
f
d
k

(2
2.

2)

NOISE

−2

−1

0

1

2

3

4

Global Inf. Glob. LocalSemi-loc. Inf. Loc. None

ra
te
r k

(2
2.

2)

NOISE

−2

−1

0

1

2

3

4

Global Inf. Glob. LocalSemi-loc. Inf. Loc. None

ra
te
f
d
k

(2
2.

3)

NOISE

−2

−1

0

1

2

3

4

Global Inf. Glob. LocalSemi-loc. Inf. Loc. None

ra
te
f
r
k

(2
2.

3)

NOISE

−2

−1

0

1

2

3

4

Global Inf. Glob. LocalSemi-loc. Inf. Loc. None

ra
te
f
d
k

(2
2.

4)

NOISE

−2

−1

0

1

2

3

4

Global Inf. Glob. LocalSemi-loc. Inf. Loc. None

ra
te
f
r
k

(2
2.

4)

NOISE

−2

−1

0

1

2

3

4

Global Inf. Glob. LocalSemi-loc. Inf. Loc. None

ra
te
f
d
k

(2
2.

5)

NOISE

−2

−1

0

1

2

3

4

Global Inf. Glob. LocalSemi-loc. Inf. Loc. None

ra
te
f
r
k

(2
2.

5)

NOISE

−2

−1

0

1

2

3

4

Global Inf. Glob. LocalSemi-loc. Inf. Loc. None

ra
te
f
d
k

(2
2.

6)

NOISE

−2

−1

0

1

2

3

4

Global Inf. Glob. LocalSemi-loc. Inf. Loc. None

ra
te
f
r
k

(2
2.

6)

NOISE

Fig. 9: Estimates of entropy (H) and entropy rate (h) for the “Testing Representational Bias” set of artificial logs. Logs have
different degrees and types of noise: infrequent, very infrequent (“Inf.”); and global, semi-local and local.

Entropy as a Measure of Log Variability 21

Insensitive to Noise Correctly Distinguishes Noise Partly Correct Skewed by Noise

ratefr
k (22.4) entropytr entropyfKL ratefd

k (22.2)
ratefr

k (22.5) entropyfpr entropyfkNN (k = 1) ratefd
k (22.3)

ratefr
k (22.6) entropyfbl ratefd

k (22.5) ratefr
k (22.2)

entropyfkNN (k = 2, 3, 4) ratefr
k (22.3) rateLZ

ratefd
k (22.4)

ratefd
k (22.6)

Table 7: Influence of noise on estimators of entropy and entropy rate.

holding others constant. That is, to measure the effect of
number of constraints, the type of constraint and number
of activities was held constant, and number of constraints
incrementally increased. Similarly, to measure the effect of
type of constraint, the number of constraints and activities
was held constant while the restrictiveness of the constraint
type was increased within its subsumption hierarchy.

Fig. 10: Portion of the Declare constraint subsumption hier-
archy from [18].

Constraint ordering Declare constraints fall into a partial
ordering in terms of their restrictiveness [19]. First, they
fall into a subsumption hierarchy within the same constraint
type e.g. AlternateSuccession is more restrive than Succes-
sion. Second, some constraint types are more restrictive than
others e.g. Succession is more restrictive than Response.

When considering the size of the model space resulting
from varying these three dimensions (number of constraints,
type of contraints, number of activities), we have favoured
systematically adjusting individual parameters over explor-
ing larger, more diverse models. The configuration of con-
straints adds a potential fourth dimension, which we’ve cho-
sen to hold constant unless doing so resulted invalid models,
which only was the case for some Chain constraints.

Monotonicity Finally, we note that the effect of alphabet
size in Declare models on entropy measures will always be
monotonically increasing when other factors are held con-
stant, since this increases the number of possible outcomes
in the sample space, broadening and flattening the proba-
bility distribution. Recall also the conjunctive nature of De-
clare: adding constraints always results in a more restrictive
model.

Observations We report the results of experiments along
with examples of the Declare models in Figures 11 and 13.

The resulting entropy measures largely fall in line with
expectations, with ratefdk and ratefrk displaying a pronounced
sensitivity to the choice of k-block cutoff constraint.

The most marked trend is the clear effect of constraint
type. A clear drop in all entropy measures occurs in models
with Alternate and Chain constraint types, with the effect of
increased number of constraints being more pronounced for
these constraint types as well.

Notably, the number of constraints has a very dimin-
ished effect for models consisting of less restrictive con-
straint types so that, for example, models with five CoEx-
istence constraints have a higher entropy across estimators
than a model with just one AlternateSuccession constraint.

Furthermore, we note that the results mirror the restric-
tiveness between parallel branches of constraint subsump-
tion hierarchies: Response is somewhat more permissive than
Succession, and this trend is also clear though less pronounced
than the effect with subsumption hierarchies. Finally, the ef-
fect of adding activities is as expected: models with more
activities result in higher entropy estimates.

The effect is clear: once models approach a degree of
expressiveness akin to imperative models of moderate com-
plexity, the entropy measure suddenly begins dropping. This
matches the intuition that a process resulting from a flexi-
ble declarative process will have markedly higher entropy,
even if that model consists of many, semantically meaning-
ful constraints.

5.3.3 Concurrent Log

In order to study in detail the effect of concurrency on en-
tropy estimates, we generated a set of logs based on mod-
els similar to the parallel model above, which vary in the
number of activities in the concurrent block and are flanked
by tails of sequential activities (see Figure 15). Specifically,
we consider traces with a total length ranging from 9 to 26

(with number of unique activities equal to the total trace
length). For each total trace length, we generate event logs
with blocks of concurrency ranging from 1 to 9 activities.
Denoting the number of activities in the concurrent block by
j, each event log contains j! unique traces.

22 Christoffer Olling Back et al.

Artificial Logs - Declarative

0

2

4

6

8

10

Responded
Existence Response

Alternate
Response

Chain
Response

LESS
RESTRICTIVE CONSTRAINTS MORE

RESTRICTIVE

entropytr

entropyfpr

entropyfbl

entropyfKL

Co-
Existence Succession

Alternate
Succession

Chain
Succession

LESS
RESTRICTIVE CONSTRAINTS MORE

RESTRICTIVE

0

1

2

rate
fd
k

rate
fr
k

ratefLZ

1 2 3 1 2 3 1 2 3 1 1+ 2 1 2 3 1 2 3 1 2 3 1 1+ 2
Number of Constraints Number of Constraints

Fig. 11: Entropy measure of artificial event logs generated from Declare models with three activities and different numbers,
and types, of constraints. All models consist of the same type of constraint and configuration, excepting Chain constraints.
Constraints are listed in order of restrictiveness, i.e. their subsumption ordering.

Fig. 12: Examples of the Declare models used to generate artificial logs. All models follow same the configuration as the Re-
sponse models displayed, except for ChainResponse since this would lead to an invalid model.In this case,the Init constraint
has been introduced to create a corressponding number of models with a similarly increasing degree of restrictiveness.

Entropy as a Measure of Log Variability 23

Artificial Logs - Declarative

0

2

4

6

8

10

Responded
Existence Response

Alternate
Response

Chain
Response

LESS
RESTRICTIVE CONSTRAINTS MORE

RESTRICTIVE

entropytr

entropyfpr

entropyfbl

entropyfKL

Co-
Existence Succession

Alternate
Succession

Chain
Succession

LESS
RESTRICTIVE CONSTRAINTS MORE

RESTRICTIVE

0

1

2

rate
fd
k

rate
fr
k

ratefLZ

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 2+ 2 3 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 2+ 2 3
Number of Constraints Number of Constraints

Fig. 13: Entropy measure of artificial event logs generated from Declare models with four activities and different numbers,
and types, of constraints. All models consist of the same type of constraint and configuration, excepting Chain constraints.
Constraints are listed in order of restrictiveness, i.e. their subsumption ordering.

Fig. 14: Examples of the Declare models used to generate artificial logs. All models follow same the configuration as the
Response models displayed, except for ChainResponse since this would lead to an invalid model. In this case,the Init and
Last/End constraints have been introduced to create a corresponding number of models with a similarly increasing degree of
restrictiveness.

24 Christoffer Olling Back et al.

t1 . . . ti ...
...

ti+1

ti+j

... ti+j+1 . . . t2i+j

Fig. 15: A Petri net representing a block of concurrency of
size j flanked by sequential tails of length i on either end.
Activities in the concurrent block can be ordered in j! dif-
ferent permutations.

j = 1 j = 2

〈a, b, c, d, e, f, g, h, i〉 〈a, b, c,d, e, f, g, h, i〉
〈a, b, c, e,d, f, g, h, i〉 〈a, b, c,d, f , e, g, h, i〉

j = 3 j = 4

〈a, b, c,d, e, f , g, h, i〉 〈a, b, c,d, e, f , g, h, i〉
〈a, b, c, e,d, f , g, h, i〉 〈a, b, c, e,d, f , g, h, i〉
〈a, b, c, e, f ,d, g, h, i〉 〈a, b, c, e, f ,d, g, h, i〉
〈a, b, c, f ,d, e, g, h, i〉 〈a, b, c, f ,d, e, g, h, i〉
〈a, b, c, f , e,d, g, h, i〉 〈a, b, c, f , e,d, g, h, i〉

〈a, b,d, c, e, f , g, h, i〉
...

Table 8: Traces of total length 9, with blocks of concurrency
of size j in the middle.

Observations. We report the results of experiments in Fig-
ure 16.

As the block of concurrency grows, we see that estimates
of entropy (H) consistently increase. Estimates of entropy
rate are less consistent: several block-based estimators level
off at a high value (3-5 depending on total trace length) very
quickly because the constraint on block length is violated al-
most immediately. Other block based estimators grow loga-
rithmically, appearing to converge to values between 2-3.

Most striking is the Lempel-Ziv estimator which falls
with concurrent block size, levelling off at values between
1 and 2.5 depending on total trace length. The high esti-
mates for blocks of length 1, 2 and 3 are most likely due
primarily to smaller log sizes. Concurrent logs with many
traces will nonetheless contain many shared subsequences
between traces, allowing for greater compression. In this
sense, Lempel-Ziv in particular and entropy rate estimates
in general, are not “tricked” by concurrency in the same way
that simple entropy estimates are prone to.

The motivation for considering logs with blocks of con-
currency logs is the intuition that, although this behaviour
can be succinctly captured by a simple Petri net, the large
degree of variation between traces would perhaps lead to
inappropriately high entropy values. However, a concurrent
block can be equally, if not more, succinctly modelled us-
ing a declarative model with an ExactlyOne constraint on

each activity in the block. This is an edge case, and in the
circumstance in which a large degree of concurrency exists,
but with some constraints, declarative models are capable of
capturing this behaviour much more succinctly.

Those logs in which long sequential tails flank a concur-
rent block may indeed be more succinctly modelled imper-
atively, but the lower values given by several entropy rate
estimators, in particular Lempel-Ziv, do in fact reflect the
greater degree of structure in such logs. This is in line with
the claim that low entropy logs are better suited to be mod-
elled imperatively. To see this, consider that for logs with
a concurrent block of size 9 and no tails, the Lempel-Ziv
entropy is high: about 2.5; whereas in the case of the same
block flanked by sequential tails of length 9, the entropy falls
to about 1.0 (see Figure 16).

6 Discussion

In the previous section we reported entropy measurements
generated by a variety of estimators. Most measures were
broadly in line with expectations, especially on artificially
generated logs, with some proving more robust than others.

To guide our investigation, we designed the synthetic
logs L1, L2, L4 to be suitable for imperative mining, and L3

for declarative mining. Moreover, as indicated in Table 3,
the sentiment in the community is that the BPI Challenge
2012, Hospital, and the Sepsis Cases logs are well-suited for
declarative mining. Finally, we employed several sets of ar-
tificial logs for which the generating model is known. If we
take as canonical these indicators, the most promising mea-
sures for predicting suitability for imperative and declarative
mining appear to be:

entropyfbl

entropyfKL and entropyfkNN

ratefLZ

ratefdk and ratefrk using constraint (22.5)

We summarise these particular measures in Table 6. No one
measure is able to classify all logs exactly as desired, which
is unsurprising. In practice, several of the strongest estima-
tors might be used in combination, or even as input to a clas-
sification algorithm along with other log attributes.

We note that these five estimators perform quite differ-
ently when confronted with noise. In particular, ratefLZ is
unstable in the presence of noise. The remaining estimators
are either able to clearly identify noise, or are insensitive to
it, in both cases maintaining a consistent relative ranking of
logs. Whether sensitivity to noise is desirable will depend
on the task at hand.

Aside from the case of artificial logs, the present evalua-
tion suffers from a significant degree of uncertainty regard-
ing the labelling of logs as “declarative” or “imperative”. A

Entropy as a Measure of Log Variability 25

Artificial Logs - Concurrency

0

5

10

15

20

entropytr

entropyfKL

1 2 3 4 5 6 7 8 9 1 2

entropyfpr
entropyfbl

3 4 5 6 7 8 93 4 5 6 7 8 9

E
nt

ro
py

Size of Concurrent Block Size of Concurrent Block

1

2

3

4

5

ratefd
k (22.2)

ratefd
k (22.3)

ratefr
k (22.2)

ratefr
k (22.3)

ratefr
k (22.4)-(22.6)

1

2

3

4

5

1 2 3 4 5

ratefd
k (22.4)

ratefd
k (22.5)

ratefd
k (22.6)

6 7 8 9 1 2 3 4 5

ratefLZ

6 7 8 9

E
nt

ro
py

R
at

e
E

nt
ro

py
R

at
e

Size of Concurrent Block Size of Concurrent Block

Fig. 16: Estimates of entropy (H) and entropy rate (h) of artificial concurrent logs. Data points are clustered by size of
concurrent block (j) with each cluster containing 18 points, representing traces with total length from ranging from 9 to 26,
from left to right within each cluster.

26 Christoffer Olling Back et al.

more thorough evaluation would involve a quantitative anal-
ysis of the logs to determine whether they are better suited
for imperative or declarative mining according to objective
criteria. One way to approach such an analysis could be to
mine each log with state-of-the-art imperative and declara-
tive miners and compare the resulting models according to
accepted quality criteria which can be applied to models of
both paradigms, e.g., [11]. The concrete outlines for such a
study have been proposed in [6].

6.1 Entropy measures (H)

We determine that entropytr and entropyfpr have a number
of shortcomings, which are partly addressed by entropyfKL,
entropyfkNN and entropyfbl. However, all of these estima-
tors are sensitive to the absolute size of logs, i.e. the length of
traces and number of activities. All four seem to clearly mis-
classify one log in particular: the Road Traffic Fines Man-
agement log which receives a low entropy, but is charac-
terised as a declarative process in the literature.

These measures are also strongly affected by concur-
rency, growing steadily with the size of the concurrent block,
regardless of the presence of strictly sequential prefixes and
suffixes. One aspect on which these measures perform sur-
prisingly well is in detecting noise, clearly reflecting for
most logs in “Testing Representational Bias” event log the
degree and type of noise added.

6.1.1 Block Entropy Measures

Global block entropy improves on prefix entropy because it
is able to capture differences between traces, even if they
share the same prefix. It gives measures which partially re-
flect our assumptions as to which logs are more or less struc-
tured: BPI Challenge 2012, Hospital Event Log and Sep-
sis Cases have markedly higher global block entropy than
more structured logs such as BPI Challenge 2013. However,
it clearly gives lower values to smaller logs with L1 through
L4 all having drastically lower values than the larger logs.
This is unsurprising, since logs with longer traces will sim-
ply have many more possible k-blocks, flattening the proba-
bility distribution over outcomes and increasing the entropy.

6.1.2 Nearest Neighbour Measures

Nearest neighbour based measures give similar results, rel-
atively speaking, to global block entropy on many real logs,
assigning higher values to BPI Challenge 2012 and 2017,
and Hospital Event Log. However, they characterise Sepsis
Cases as having a moderately low entropy.

Despite the nearest neighbour measures being applied
to flattened logs, they are in general close to the original

trace entropy. For those logs whose nearest neighbour en-
tropy values deviate from trace entropy, the values are sig-
nificantly lower, suggesting that edit distance really does ac-
count for the trace similarity ignored by the original trace
entropy measure: the nearest neighbour measures group to-
gether very similar traces which are considered distinct by
the original trace entropy.

We observe that entropykNN tends to decrease with k
for real logs, and note that our results confirm Singh, et. al’s
empirical results showing that entropykNN closely matches
entropyKL when k = 1.

The nearest neighbor approach is largely unaffected by
noise in the parallel artificial log. This is not surprising since
the added events will only increase the normalised edit dis-
tance to nearest neighbour slightly, and may have no effect
on traces with similar noise.

We emphasise that this measure depends crucially on the
formulation of distance between traces, leaving ample room
for improvement by, for example, developing more sophis-
ticated edit operation cost-weightings using domain knowl-
edge or choosing to lessen the penalty to traces of very dif-
ferent lengths.

This approach suffers from one very clear shortcoming:
complexity. In the worst case, the distance between every
pair of traces must be computed, though unnecessary com-
putations can be avoiding by using a dynamic programming
approach, checking lower bounds on edit distance, as well
as common prefixes and suffixes. Despite employing these
improvements along with a fast iterative implementation for
computing lev, we found this measure to be prohibitively
time consuming for some of the large artificial logs (concur-
rent).

6.2 Entropy Rate Measures (h)

Entropy rate measures are more resilient to variations in the
size of logs and number of activities, as demonstrated by
the fact that L1 through L4 are assigned entropy rate esti-
mates within the range of the (much larger) real life logs.
However, they are in general much more affected by noise:
in some cases (see Figure 9), ranking logs by entropy is not
always stable under the addition of noise. It is encouraging
that Lempel-Ziv and block-based entropy rate estimators us-
ing certain cutoff constraints return relatively consistent es-
timates despite being based on very different approaches.
This suggests that they are in fact converging towards some-
thing near to the “true” entropy rate.

6.2.1 k-block estimators

We observed that the constraints for “good statistics” for
block-based entropy rate estimators were in line with the
properties discussed in 4.1.1. Namely, the constraints (22.2)

Entropy as a Measure of Log Variability 27

and (22.3), which are asymptotic upper bounds, allow k to
grow much too large. The stricter constraints give much more
reasonable entropy rate estimates, but also restrict k to ex-
tremely low values.

One important question we leave for future work con-
cerns the appropriateness of the statistical assumptions un-
derlying k-block estimators when applied to sets of sequences
rather than single sequences. This means we get more sam-
ples of k-blocks than would be the case for a single sequence
and the exact number of samples depends on the distribution
of trace lengths in the log: a log may consist of many very
short traces and one very long trace, in which case longer
blocks would still be under-sampled. In our implementation
we chose to define the sequence length K as the longest
trace, but a more principled approach should be considered.

Furthermore, some constraints are a function of the true
entropy rate h itself, for which our implementation takes the
current running estimate. Another approach may be to use
another estimator for this, such as Lempel-Ziv.

In general, k-block entropy rate estimators appear to be
rather unstable and very sensitive to the particular combi-
nation of constraint on k and log characteristics which is
clearly illustrated by the erratic fluctuations in Figure 9. The
ratio based formulation raterk converges more slowly (see
Figure 7), which is in line with previous research [25, 36].
In this sense, it is more robust than ratedk. We note that the
unusually high value assigned to some logs, such as NASA
CEV, is due to the cutoff constraints restricting the estimator
to the 1-block entropy.

Finally, we note that these estimators are surprisingly
poor at detecting noise in artificial logs. Only ratedk using
constraint (22.4) is able to consistently distinguish the de-
gree and type of noise across the “Testing Representational
Bias” set of logs. On the concurrent logs these estimators
also give somewhat inconsistent results: certain constraints
are so strict that the estimate plateaus immediately, with the
relationship of concurrent block size to tail size apparently
inverted, while other constraints lead to more reasonable es-
timates, which grow logarithmically with the size of concur-
rent block.

6.2.2 Lempel-Ziv

The Lempel-Ziv estimator has the advantage over block-
based estimators that it is nonparametric in constrast to ratedk
and raterk which require choosing a cutoff constraint. It also
appears to be much more robust, i.e. less erratic.

Wwe observe that for some logs, however, that it returns
values contradicting our assumptions regarding modelling
paradigms. In particular, BPI Challenge 2012 has a very low
rateLZ value, lower than BPI Challenge 2013: the oppo-
site of what we would expect if declarative processes have
higher entropy.

An important detail concerns the order in which the logs
are parsed. Since the Lempel Ziv algorithm parses sequences
based on the order in which symbols are observed, parsing
the traces in a different order can result in a different parsing
and a slightly different value for rateLZ . In our implemen-
tation we parsed logs in their original ordering. A sampling
based approach for assessing the variability of the estimates
could be an avenue for future work.

The Lempel-Ziv estimator clearly outshines on the con-
current artificial log. It is surprisingly effective at capturing
the fact that even large blocks of concurrency should have a
low entropy rate when flanked by long sequential tails, while
a concurrent blocks with short, or no, sequential tails show
a slowly growing entropy rate.

Lempel-Ziv performs less impressively when presented
with noise and appears unable to distinguish types and de-
gree of noise, with a number of the estimates “crossing over”
for different logs in the presence of noise. For example, it
assigns the Duplicates log a higher or lower entropy than
the Parallel log depending on the particular type of noise
present: a distinction other estimators are able to make.

On the logs generated from Declare models, Lempel-Ziv
performs well, showing the expected drop on very restrictive
declarative model and again proving more stable than other
entropy rate estimators. Finally, this estimator proved to be
one of the fastest to compute.

7 Conclusion

We studied entropy as a measure of the variability of a pro-
cess log, with the intended application of classifying logs as
more suitable for declarative or imperative miners. Specif-
ically, we contributed (1) a survey of potential measures of
entropy; (2) an implementation of these measures; (3) an ex-
perimental investigation of the proposed measures on both
synthetic and real-life logs; and (4) based on this investi-
gation and the community understanding of which logs are
likely declarative, a qualitative evaluation of the suitability
of the measures.

A more rigorous, quantitative evaluation of the proposed
measures requires a clear partitioning of logs into “impera-
tive” or “declarative” classes. More precisely, we need clear
ways of evaluating whether mining a log imperatively or
declaratively produces “better” models: an open research
question in itself. With a clearly defined error measure in
hand, one or more entropy estimators could, for example,
serve as input features to a classification algorithm to deter-
mine which mining approach to apply to a log, or in the case
of hybrid mining, applied to partitions of the log in order to
determine the mix of mining approaches.

Acknowledgements. We would like to thank Jakob Grue Si-
monsen for valuable discussions.

28 Christoffer Olling Back et al.

References

1. Real life event logs. https://data.4tu.nl/
repository/collection:event_logs_real. 4TU
Centre for Research Data. Accessed: 2018-23-01

2. van der Aalst, W.M.P.: The application of petri nets to workflow
management. Journal of Circuits, Systems and Computers 08, 21–
66 (1998). DOI 10.1142/S0218126698000043

3. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance
and Enhancement of Business Processes. Springer (2011). DOI
10.1007/978-3-642-19345-3

4. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Re-
playing history on process models for conformance checking and
performance analysis. Wiley Interdisc. Rew.: Data Mining and
Knowledge Discovery 2(2), 182–192 (2012). DOI 10.1002/widm.
1045. URL http://dx.doi.org/10.1002/widm.1045

5. Back, C.O.: Eventropy - entropy estimation tool and CLI for XES
event logs and other sequential data. https://github.com/
backco/eventropy

6. Back, C.O., Debois, S., Slaats, T.: Towards an empirical evaluation
of imperative and declarative process mining. In: Accepted for the
First International Workshop on Empirical Methods in Conceptual
Modeling (EmpER’18) (2018)

7. Back, C.O., Debois, S., Slaats, T.: Towards an Entropy-Based
Analysis of Log Variability. In: E. Teniente, M. Weidlich (eds.)
Business Process Management Workshops, Lecture Notes in Busi-
ness Information Processing, vol. 308, pp. 53–70. Springer Inter-
national Publishing, Cham (2018)

8. Bishop, C.M.: Pattern recognition and machine learning. Springer
(2006)

9. Bose, R.J.C., van der Aalst, W.M.: Context aware trace clustering:
Towards improving process mining results. In: Proceedings of the
2009 SIAM International Conference on Data Mining, pp. 401–
412. SIAM (2009)

10. Breuker, D., Matzner, M., Delfmann, P., Becker, J.: Comprehensi-
ble predictive models for business processes. MIS Quarterly 40(4)
(2016)

11. Buijs, J., Dongen, B., Aalst, W.: On the role of fitness, precision,
generalization and simplicity in process discovery. In: On the
Move to Meaningful Internet Systems: OTM 2012, vol. 7565, pp.
305–322. Springer Berlin Heidelberg (2012). DOI http://dx.doi.
org/10.1007/978-3-642-33606-5 19. URL http://wwwis.
win.tue.nl/˜wvdaalst/publications/p688.pdf

12. Cover, T., King, R.: A convergent gambling estimate of the en-
tropy of english. Information Theory, IEEE Transactions on 24(4),
413–421 (1978)

13. De Medeiros, A., Guzzo, A., Greco, G., Van Der Aalst, W., Wei-
jters, A., Van Dongen, B., SaccÃ , D.: Process mining based on
clustering: A quest for precision. pp. 17–29 (2008)

14. Debois, S., Hildebrandt, T., Slaats, T.: Safety, liveness and run-
time refinement for modular process-aware information systems
with dynamic sub processes. In: International Symposium on
Formal Methods, pp. 143–160. Springer International Publishing
(2015)

15. Debois, S., Slaats, T.: The analysis of a real life declarative pro-
cess. In: CIDM 2015, pp. 1374–1382 (2015)

16. Delattre, S., Fournier, N.: On the kozachenko–leonenko entropy
estimator.(report). Journal of Statistical Planning and Inference
185 (2017)

17. Delias, P., Doumpos, M., Grigoroudis, E., Matsatsinis, N.: A non-
compensatory approach for trace clustering. International Trans-
actions in Operational Research (2017)

18. Di Ciccio, C., Bernardi, M.L., Cimitile, M., Maggi, F.M.: Gen-
erating event logs through the simulation of declare models. In:
Workshop on Enterprise and Organizational Modeling and Simu-
lation, pp. 20–36. Springer (2015)

19. Di Ciccio, C., Mecella, M.: On the discovery of declarative control
flows for artful processes. ACM Trans. Manage. Inf. Syst. 5(4),
24:1–24:37 (2015). DOI 10.1145/2629447

20. Greco, G., Guzzo, A., Pontieri, L., Sacca, D.: Discovering expres-
sive process models by clustering log traces. IEEE Transactions
on Knowledge and Data Engineering 18(8), 1010–1027 (2006).
DOI 10.1109/TKDE.2006.123

21. Greco, G., Guzzo, A., Pontieri, L., Sacca, D.: Discovering expres-
sive process models by clustering log traces. IEEE Transactions
on Knowledge and Data Engineering 18(8), 1010–1027 (2006)

22. Ha, Q.T., Bui, H.N., Nguyen, T.T.: A trace clustering solution
based on using the distance graph model. In: International Con-
ference on Computational Collective Intelligence, pp. 313–322.
Springer (2016)

23. Hofmann, T.: Probabilistic latent semantic analysis. In: Proceed-
ings of the Fifteenth conference on Uncertainty in artificial intel-
ligence, pp. 289–296. Morgan Kaufmann Publishers Inc. (1999)

24. Hull, R., Damaggio, E., Masellis, R.D., Fournier, F., Gupta, M.,
Heath, F., Hobson, S., Linehan, M., Maradugu, S., Nigam, A., Noi
Sukaviriya, P., Vaculı́n, R.: Business artifacts with guard-stage-
milestone lifecycles: managing artifact interactions with condi-
tions and events. In: DEBS 2011, pp. 51–62 (2011)

25. Lesne, A., Blanc, J.L., Pezard, L.: Entropy estimation of very short
symbolic sequences. Physical Review E 79(4), 046208 (2009)

26. Li, M.: An introduction to Kolmogorov complexity and its appli-
cations, 3. ed. edn. Texts in computer science. Springer, New York
(2008)

27. MacKay, D.J.C.: Information theory, inference and learning al-
gorithms, 6. print. edn. Cambridge University Press, Cambridge
(2003)

28. Maggi, F., Slaats, T., Reijers, H.: The automated discovery of hy-
brid processes. In: BPM, pp. 392–399 (2014)

29. Maggi, F.M., Slaats, T., Reijers, H.A.: The automated discovery
of hybrid processes. In: Business Process Management - 12th In-
ternational Conference, BPM 2014, Haifa, Israel, September 7-11,
2014. Proceedings, pp. 392–399 (2014)

30. Makanju, A.A., Zincir-Heywood, A.N., Milios, E.E.: Clustering
event logs using iterative partitioning. In: Proceedings of the
15th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, KDD ’09, pp. 1255–1264. ACM, New
York, NY, USA (2009). DOI 10.1145/1557019.1557154. URL
http://doi.acm.org/10.1145/1557019.1557154

31. Mannhardt, F., Blinde, D.: Analyzing the trajectories of patients
with sepsis using process mining. RADAR+ EMISA 1859, 72–80
(2017)

32. Object Management Group: Business Process Modeling Notation
Version 2.0. Tech. rep., Object Management Group Final Adopted
Specification (2011)

33. Pesic, M., Schonenberg, H., van der Aalst, W.: Declare: Full sup-
port for loosely-structured processes. In: EDOC 2007, pp. 287–
300 (2007)

34. Reijers, H., Slaats, T., Stahl, C.: Declarative modeling-an aca-
demic dream or the future for bpm? In: BPM 2013, pp. 307–322
(2013)

35. Schunselaar, D.M.M., Slaats, T., Maggi, F.M., Reijers, H.A.,
van der Aalst, W.M.P.: Mining hybrid business process models:
A quest for better precision. In: W. Abramowicz, A. Paschke
(eds.) Business Information Systems, pp. 190–205. Springer In-
ternational Publishing, Cham (2018)

36. Schürmann, T., Grassberger, P.: Entropy estimation of symbol se-
quences. Chaos: An Interdisciplinary Journal of Nonlinear Sci-
ence 6(3), 414–427 (1996)

37. Shannon, C.E.: A mathematical theory of communication. The
Bell System Technical Journal 27(3), 379–423 (1948). DOI 10.
1002/j.1538-7305.1948.tb01338.x

38. Singh, H., Misra, N., Hnizdo, V., Fedorowicz, A., Demchuk, E.:
Nearest neighbor estimates of entropy. American Journal of Math-
ematical and Management Sciences 23(3-4), 301–321 (2003)

https://data.4tu.nl/repository/collection:event_logs_real
https://data.4tu.nl/repository/collection:event_logs_real
http://dx.doi.org/10.1002/widm.1045
https://github.com/backco/eventropy
https://github.com/backco/eventropy
http://wwwis.win.tue.nl/~wvdaalst/publications/p688.pdf
http://wwwis.win.tue.nl/~wvdaalst/publications/p688.pdf
http://doi.acm.org/10.1145/1557019.1557154

Entropy as a Measure of Log Variability 29

39. Singh, S., Poczos, B.: Analysis of k-nearest neighbor distances
with application to entropy estimation (2016)

40. Slaats, T., Schunselaar, D.M.M., Maggi, F.M., Reijers, H.A.: The
semantics of hybrid process models. In: CoopIS, pp. 531–551
(2016)

41. Smedt, J.D., Weerdt, J.D., Vanthienen, J.: Fusion miner: Process
discovery for mixed-paradigm models. Decision Support Systems
77, 123–136 (2015)

42. Song, M., Günther, C.W., Aalst, W.M.: Trace clustering in process
mining. In: Business Process Management Workshops, pp. 109–
120. Springer (2009)

43. Thomas, J.A., Cover, T.M.: Elements of information theory. John
Wiley and Sons (2006)

44. Van Der Aalst, W.W.: Testing representational biases (2017). DOI
10.4121/uuid:25d6eef5-c427-42b5-ab38-5e512cca08a9

45. Ziv, J., Lempel, A.: A universal algorithm for sequential data com-
pression. Information Theory, IEEE Transactions on 23(3), 337–
343 (1977)

46. Ziv, J., Lempel, A.: Compression of individual sequences via
variable-rate coding. Information Theory, IEEE Transactions on
24(5), 530–536 (1978)

	Introduction
	Process Logs
	Entropy and Process Logs
	Trace Entropy
	Prefix Entropy
	Block Entropy
	Stationarity and Ergodicity
	Block Entropy for Event Logs vs. Natural Language
	Nearest Neighbours Estimators
	Edit Distance Between Traces
	Distance-based Estimators

	Entropy Rate of Stochastic Processes
	Block-based Estimators
	Sufficient Statistics

	Lempel-Ziv Estimators

	Implementation and Experiments
	Implementation
	Real-life Logs
	Artificial Logs
	Petri net based logs with noise
	Declare based logs
	Concurrent Log

	Discussion
	Entropy measures (H)
	Block Entropy Measures
	Nearest Neighbour Measures

	Entropy Rate Measures (h)
	k-block estimators
	Lempel-Ziv

	Conclusion

