76 research outputs found
Complexation of Nickel Ions by Boric Acid or (Poly)borates
International audienc
Contemporary spinal cord protection during thoracic and thoracoabdominal aortic surgery and endovascular aortic repair: a position paper of the vascular domain of the European Association for Cardio-Thoracic Surgeryâ
Ischaemic spinal cord injury (SCI) remains the Achilles heel of open and endovascular descending thoracic and thoracoabdominal repair. Neurological outcomes have improved coincidentially with the introduction of neuroprotective measures. However, SCI (paraplegia and paraparesis) remains the most devastating complication. The aim of this position paper is to provide physicians with broad information regarding spinal cord blood supply, to share strategies for shortening intraprocedural spinal cord ischaemia and to increase spinal cord tolerance to transitory ischaemia through detection of ischaemia and augmentation of spinal cord blood perfusion. This study is meant to support physicians caring for patients in need of any kind of thoracic or thoracoabdominal aortic repair in decision-making algorithms in order to understand, prevent or reverse ischaemic SCI. Information has been extracted from focused publications available in the PubMed database, which are cohort studies, experimental research reports, case reports, reviews, short series and meta-analyses. Individual chapters of this position paper were assigned and after delivery harmonized by Christian D. Etz, Ernst Weigang and Martin Czerny. Consequently, further writing assignments were distributed within the group and delivered in August 2014. The final version was submitted to the EJCTS for review in September 201
Should intentional endovascular stent-graft coverage of the left subclavian artery be preceded by prophylactic revascularisation?
Thoracic endovascular aortic repair (TEVAR) has emerged as a promising therapeutic alternative to conventional open aortic replacement but it requires suitable proximal and distal landing zones for stent-graft anchoring. Many aortic pathologies affect in the immediate proximity of the left subclavian artery (LSA) limiting the proximal landing zone site without proximal vessel coverage. In patients in whom the distance between the LSA and aortic lesion is too short, extension of the landing zone can be obtained by covering the LSA's origin with the endovascular stent graft (ESG). This manoeuvre has the potential for immediate and delayed neurological and vascular symptoms. Some authors, therefore, propose prophylactic revascularisation of the LSA by transposition or bypass, while others suggest prophylactic revascularisation only under certain conditions, and still others see no requirement for prophylactic revascularisation in anticipation of LSA ostium coverage. In this review about LSA revascularisation in TEVAR patients with coverage of the LSA, we searched the electronic databases MEDLINE and EMBASE historically until the end date of May 2010 with the search terms left subclavian artery, covering, endovascular, revascularisation and thoracic aorta. We have gathered the most complete scientific evidence available used to support the various concepts to deal with this issue. After a review of the current available literature, 23 relevant articles were found, where we have identified and analysed three basic treatment concepts for LSA revascularisation in TEVAR patients (prophylactic, conditional prophylactic and no prophylactic LSA revascularisation). The available evidence supports prophylactic revascularisation of the LSA before ESG LSA coverage when preoperative imaging reveals abnormal supra-aortic vascular anatomy or pathology. We further conclude that elective patients undergoing planned coverage of the LSA during TEVAR should receive prophylactic LSA transposition or LSA-to-left-common-carotid-artery (LCCA) bypass surgery to prevent severe neurological complications, such as paraplegia or brain stem infarctio
The future of aortic surgery in Europeâ
At least every ten years, each specialty should reflect upon its past, its present and its future, in order to be able to reconfirm the direction in which it is headed, to adopt suggestions from inside and outside and, consequently, to improve. As such, the aim of this manuscript is to provide the interested reader with an overview of how aortic surgery and (perhaps more accurately) aortic medicine has evolved in Europe, and its present standing; also to provide a glimpse into the future, trying to disseminate the thoughts of a group of people actively involved in the development of aortic medicine in Europe, namely the Vascular Domain of the European Association of Cardio-Thoracic Surgery (EACTS
Current status and recommendations for use of the frozen elephant trunk technique: a position paper by the Vascular Domain of EACTSâ
The implementation of new surgical techniques offers chances but carries risks. Usually, several years pass before a critical appraisal and a balanced opinion of a new treatment method are available and rely on the evidence from the literature and expert's opinion. The frozen elephant trunk (FET) technique has been increasingly used to treat complex pathologies of the aortic arch and the descending aorta, but there still is an ongoing discussion within the surgical community about the optimal indications. This paper represents a common effort of the Vascular Domain of EACTS together with several surgeons with particular expertise in aortic surgery, and summarizes the current knowledge and the state of the art about the FET technique. The majority of the information about the FET technique has been extracted from 97 focused publications already available in the PubMed database (cohort studies, case reports, reviews, small series, meta-analyses and best evidence topics) published in Englis
Should intentional endovascular stent-graft coverage of the left subclavian artery be preceded by prophylactic revascularisation?
Thoracic endovascular aortic repair (TEVAR) has emerged as a promising therapeutic alternative to conventional open aortic replacement but it requires suitable proximal and distal landing zones for stent-graft anchoring. Many aortic pathologies affect in the immediate proximity of the left subclavian artery (LSA) limiting the proximal landing zone site without proximal vessel coverage. In patients in whom the distance between the LSA and aortic lesion is too short, extension of the landing zone can be obtained by covering the LSA's origin with the endovascular stent graft (ESG). This manoeuvre has the potential for immediate and delayed neurological and vascular symptoms. Some authors, therefore, propose prophylactic revascularisation of the LSA by transposition or bypass, while others suggest prophylactic revascularisation only under certain conditions, and still others see no requirement for prophylactic revascularisation in anticipation of LSA ostium coverage. In this review about LSA revascularisation in TEVAR patients with coverage of the LSA, we searched the electronic databases MEDLINE and EMBASE historically until the end date of May 2010 with the search terms left subclavian artery, covering, endovascular, revascularisation and thoracic aorta. We have gathered the most complete scientific evidence available used to support the various concepts to deal with this issue. After a review of the current available literature, 23 relevant articles were found, where we have identified and analysed three basic treatment concepts for LSA revascularisation in TEVAR patients (prophylactic, conditional prophylactic and no prophylactic LSA revascularisation). The available evidence supports prophylactic revascularisation of the LSA before ESG LSA coverage when preoperative imaging reveals abnormal supra-aortic vascular anatomy or pathology. We further conclude that elective patients undergoing planned coverage of the LSA during TEVAR should receive prophylactic LSA transposition or LSA-to-left-common-carotid-artery (LCCA) bypass surgery to prevent severe neurological complications, such as paraplegia or brain stem infarction
The future of aortic surgery in Europe
At least every ten years, each specialty should reflect upon its past, its present and its future, in order to be able to reconfirm the direction in which it is headed, to adopt suggestions from inside and outside and, consequently, to improve. As such, the aim of this manuscript is to provide the interested reader with an overview of how aortic surgery and (perhaps more accurately) aortic medicine has evolved in Europe, and its present standing; also to provide a glimpse into the future, trying to disseminate the thoughts of a group of people actively involved in the development of aortic medicine in Europe, namely the Vascular Domain of the European Association of Cardio-Thoracic Surgery (EACTS)
Adjuvant nab-Paclitaxel + Gemcitabine in Resected Pancreatic Ductal Adenocarcinoma: Results From a Randomized, Open-Label, Phase III Trial
PURPOSE: This randomized, open -label trial compared the efficacy and safety of adjuvant nabpaclitaxel + gemcitabine with those of gemcitabine for resected pancreatic ductal adenocarcinoma (ClinicalTrials.gov identifier: NCT01964430). METHODS: We assigned 866 treatment -naive patients with pancreatic ductal adenocarcinoma to nab-paclitaxel (125 mg/m2) + gemcitabine (1,000 mg/m(2)) or gemcitabine alone to one 30-40 infusion on days 1, 8, and 15 of six 28 -day cycles. The primary end point was independently assessed disease -free survival (DFS). Additional end points included investigator-assessed DFS, overall survival (OS), and safety. RESULTS: Two hundred eighty-seven of 432 patients and 310 of 434 patients completed nabpaclitaxel + gemcitabine and gemcitabine treatment, respectively. At primary data cutoff (December 31, 2018; median follow-up, 38.5 [interquartile range [IQR], 33.8-43 months), the median independently assessed DFS was 19.4 (nab-paclitaxel + gemcitabine) versus 18.8 months (gemcitabine; hazard ratio [HR], 0.88; 95% CI, 0.729 to 1.063; P =.18). The median investigator-assessed DFS was 16.6 (IQR, 8.4-47.0) and 13.7 (IQR, 8.3-44.1) months, respectively (HR, 0.82; 95% CI, 0.694 to 0.965; P=.02). The median OS (427 events; 68% mature) was 40.5 (IQR, 20.7 to not reached) and 36.2 (IQR, 17.7-53.3) months, respectively (HR, 0.82; 95% CI, 0.680 to 0.996; P =.045). At a 16 -month follow-up (cutoff, April 3, 2020; median follow-up, 51.4 months [IQR, 47.0-57.0]), the median OS (511 events; 81% mature) was 41.8 (nab-paclitaxel + gemcitabine) versus 37.7 months (gemcitabine; HR, 0.82; 95% CI, 0.687 to 0.973; P =.0232). At the 5 -year follow-up (cutoff, April 9, 2021; median follow-up, 63.2 months [IQR, 60.1-68.7]), the median OS (555 events; 88% mature) was 41.8 versus 37.7 months, respectively (HR, 0.80; 95% CI, 0.678 to 0.947; P =.0091). Eighty-six percent (nab-paclitaxel + gemcitabine) and 68% (gemcitabine) of patients experienced grade >= 3 treatment -emergent adverse events. Two patients per study arm died of treatment -emergent adverse events. CONCLUSION: The primary end point (independently assessed DFS) was not met despite favorable OS seen with nab-paclitaxel + gemcitabine
- âŠ