75 research outputs found
Fusion of conformal interfaces
We study the fusion of conformal interfaces in the c=1 conformal field
theory. We uncover an elegant structure reminiscent of that of black holes in
supersymmetric theories. The role of the BPS black holes is played by
topological interfaces, which (a) minimize the entropy function, (b) fix
through an attractor mechanism one or both of the bulk radii, and (c) are
(marginally) stable under splitting. One significant difference is that the
conserved charges are logarithms of natural numbers, rather than vectors in a
charge lattice, as for BPS states. Besides potential applications to
condensed-matter physics and number theory, these results point to the
existence of large solution-generating algebras in string theory.Comment: 28 pages, 4 figures. Minor clarifications in v2. Sign Mistakes
corrected and reference added in v
Superconformal defects in the tricritical Ising model
We study superconformal defect lines in the tricritical Ising model in 2
dimensions. By the folding trick, a superconformal defect is mapped to a
superconformal boundary of the N=1 superconformal unitary minimal model of
c=7/5 with D_6-E_6 modular invariant. It turns out that the complete set of the
boundary states of c=7/5 D_6-E_6 model cannot be interpreted as the consistent
set of superconformal defects in the tricritical Ising model since it does not
contain the "no defect" boundary state. Instead, we find a set of 18 consistent
superconformal defects including "no defect" and satisfying the Cardy
condition. This set also includes some defects which are not purely
transmissive or purely reflective.Comment: 25 pages, 3 figures. v2: typos corrected. v3: clarification about
spin structure aligned theory added, references adde
Attractor Flows from Defect Lines
Deforming a two dimensional conformal field theory on one side of a trivial
defect line gives rise to a defect separating the original theory from its
deformation. The Casimir force between these defects and other defect lines or
boundaries is used to construct flows on bulk moduli spaces of CFTs. It turns
out, that these flows are constant reparametrizations of gradient flows of the
g-functions of the chosen defect or boundary condition. The special flows
associated to supersymmetric boundary conditions in N=(2,2) superconformal
field theories agree with the attractor flows studied in the context of black
holes in N=2 supergravity.Comment: 28 page
D-branes and orientifolds of SO(3)
We study branes and orientifolds on the group manifold of SO(3). We consider
particularly the case of the equatorial branes, which are projective planes. We
show that a Dirac-Born-Infeld action can be defined on them, although they are
not orientable. We find that there are two orientifold projections with the
same spacetime action, which differ by their action on equatorial branes.Comment: 11 pages, no figure, uses JHEP3.cls. V2 : minor correction
Defect flows in minimal models
In this paper we study a simple example of a two-parameter space of
renormalisation group flows of defects in Virasoro minimal models. We use a
combination of exact results, perturbation theory and the truncated conformal
space approach to search for fixed points and investigate their nature. For the
Ising model, we confirm the recent results of Fendley et al. In the case of
central charge close to one, we find six fixed points, five of which we can
identify in terms of known defects and one of which we conjecture is a new
non-trivial conformal defect. We also include several new results on exact
properties of perturbed defects and on the renormalisation group in the
truncated conformal space approach.Comment: 35 pages, 21 figures. 1 reference adde
Defect Perturbations in Landau-Ginzburg Models
Perturbations of B-type defects in Landau-Ginzburg models are considered. In
particular, the effect of perturbations of defects on their fusion is analyzed
in the framework of matrix factorizations. As an application, it is discussed
how fusion with perturbed defects induces perturbations on boundary conditions.
It is shown that in some classes of models all boundary perturbations can be
obtained in this way. Moreover, a universal class of perturbed defects is
constructed, whose fusion under certain conditions obey braid relations. The
functors obtained by fusing these defects with boundary conditions are twist
functors as introduced in the work of Seidel and Thomas.Comment: 46 page
On supersymmetric interfaces for string theory
We construct the world-sheet interface which preserves space-time
supersymmetry in type II superstring theories in the Green-Schwarz formalism.
This is an analog of the conformal interface in two-dimensional conformal field
theory. We show that a class of the supersymmetric interfaces generates
T-dualities of type II theories, and that these interfaces have a geometrical
interpretation in the doubled target space. We compute the partition function
with a pair of the supersymmetric interfaces inserted, from which we read off
the spectrum of the modes coupled to the interfaces and the Casimir energy
between them. We also derive the transformation rules under which a set of
D-branes is transformed to another by the interface.Comment: 1+23 pages, 1 figure; (v2) added comments, made changes in
presentatio
Chiral Supersymmetric Gepner Model Orientifolds
We explicitly construct A-type orientifolds of supersymmetric Gepner models.
In order to reduce the tadpole cancellation conditions to a treatable number we
explicitly work out the generic form of the one-loop Klein bottle, annulus and
Moebius strip amplitudes for simple current extensions of Gepner models.
Equipped with these formulas, we discuss two examples in detail to provide
evidence that in this setting certain features of the MSSM like unitary gauge
groups with large enough rank, chirality and family replication can be
achieved.Comment: 37 pages, TeX (harvmac), minor changes, typos corrected, to appear in
JHE
B-type defects in Landau-Ginzburg models
We consider Landau-Ginzburg models with possibly different superpotentials
glued together along one-dimensional defect lines. Defects preserving B-type
supersymmetry can be represented by matrix factorisations of the difference of
the superpotentials. The composition of these defects and their action on
B-type boundary conditions is described in this framework. The cases of
Landau-Ginzburg models with superpotential W=X^d and W=X^d+Z^2 are analysed in
detail, and the results are compared to the CFT treatment of defects in N=2
superconformal minimal models to which these Landau-Ginzburg models flow in the
IR.Comment: 50 pages, 2 figure
Casimir effect in the boundary state formalism
Casimir effect in the planar setting is described using the boundary state
formalism, for general partially reflecting boundaries. It is expressed in
terms of the low-energy degrees of freedom, which provides a large distance
expansion valid for general interacting field theories provided there is a
non-vanishing mass gap. The expansion is written in terms of the scattering
amplitudes, and needs no ultraviolet renormalization. We also discuss the case
when the quantum field has a nontrivial vacuum configuration.Comment: 11 pages. Proceedings contribution of talk given at the Workshop on
Quantum Field Theory under the Influence of External Conditions (QFEXT07),
University of Leipzig, September 16-21, 2007. To appear in J. Phys.
- âŠ